Astronomical detection of radioactive molecule 26AlF in the remnant of an ancient explosion


Decades ago, γ-ray observatories identified diffuse Galactic emission at 1.809 MeV1,2,3 originating from β+ decays of an isotope of aluminium, 26Al, that has a mean lifetime of 1.04 million years4. Objects responsible for the production of this radioactive isotope have never been directly identified owing to insufficient angular resolutions and sensitivities of the γ-ray observatories. Here, we report observations of millimetre-wave rotational lines of the isotopologue of aluminium monofluoride that contains the radioactive isotope (26AlF). The emission is observed towards CK Vul, which is thought to be a remnant of a stellar merger5,6,7. Our constraints on the production of 26Al, combined with the estimates on the merger rate, make it unlikely that objects similar to CK Vul are major producers of Galactic 26Al. However, the observation may be a stepping stone for unambiguous identification of other Galactic sources of 26Al. Moreover, a high content of 26Al in the remnant indicates that, before the merger, the CK Vul system contained at least one solar-mass star that evolved to the red giant branch.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Spectra of rotational lines of AlF in CK Vul.
Fig. 2: Maps of molecular emission of 26AlF and 27AlF.
Fig. 3: Mass–abundance profiles of He, 26Al and 27Al in a model of a 1M star at the tip of the RGB.


  1. 1.

    Mahoney, W. A., Ling, J. C., Jacobson, A. S. & Lingenfelter, R. E. Diffuse galactic gamma-ray line emission from nucleosynthetic Fe-60, Al-26, and Na-22—preliminary limits from HEAO 3. Astrophys. J. 262, 742 (1982).

    ADS  Article  Google Scholar 

  2. 2.

    Mahoney, W. A., Ling, J. C., Wheaton, W. A. & Jacobson, A. S. HEAO 3 discovery of Al-26 in the interstellar medium. Astrophys. J. 286, 578 (1984).

    ADS  Article  Google Scholar 

  3. 3.

    Diehl, R. et al. COMPTEL observations of Galactic 26Al emission. Astron. Astrophys. 298, 445 (1995).

    ADS  Google Scholar 

  4. 4.

    Samworth, E. A., Warburton, E. K. & Engelbertink, G. A. P. Beta decay of the 26Al ground state. Phys. Rev. C 5, 138–142 (1972).

    ADS  Article  Google Scholar 

  5. 5.

    Kamiński, T. et al. Nuclear ashes and outflow in the eruptive star Nova Vul 1670. Nature 520, 322–324 (2015).

    ADS  Article  Google Scholar 

  6. 6.

    Kato, T. CK Vul as a candidate eruptive stellar merging event. Astron. Astrophys. 399, 695–697 (2003).

    ADS  Article  Google Scholar 

  7. 7.

    Tylenda, R. et al. OGLE-2002-BLG-360: from a gravitational microlensing candidate to an overlooked red transient. Astron. Astrophys. 555, A16 (2013).

    Article  Google Scholar 

  8. 8.

    Hevelius, J. An extract of a letter, written to the publisher by the excellent Johannes Hevelius, concerning his further observations of the new star near the beak of the Swan. Phil. Trans. R. Soc. Lond. I 6, 2197 (1671).

    Article  Google Scholar 

  9. 9.

    Shara, M. M., Moffat, A. F. J. & Webbink, R. F. Unraveling the oldest and faintest recovered nova—CK Vulpeculae (1670). Astrophys. J. 294, 271–285 (1985).

    ADS  Article  Google Scholar 

  10. 10.

    Tylenda, R. & Soker, N. Eruptions of the V838 Mon type: stellar merger versus nuclear outburst models. Astron. Astrophys. 451, 223–236 (2006).

    ADS  Article  Google Scholar 

  11. 11.

    Tylenda, R. et al. V1309 Scorpii: merger of a contact binary. Astron. Astrophys. 528, AA114 (2011).

    Article  Google Scholar 

  12. 12.

    Kamiński, T. et al. Organic molecules, ions, and rare isotopologues in the remnant of the stellar-merger candidate, CK Vulpeculae (Nova 1670). Astron. Astrophys. 607, A78 (2017).

    Article  Google Scholar 

  13. 13.

    Oberlack, U. et al. COMPTEL limits on 26Al 1.809 MeV line emission from γ2 Velorum. Astron. Astrophys. 353, 715–721 (2000).

    ADS  Google Scholar 

  14. 14.

    Guelin, M. et al. Nucleosynthesis in AGB stars: observation of 25Mg and 26Mg in IRC + 10216 and possible detection of 26Al. Astron. Astrophys. 297, 183–196 (1995).

    ADS  Google Scholar 

  15. 15.

    Banerjee, D. P. K. et al. A search for radioactive 26Al in the nova-like variable V4332 Sagittarii. Astrophys. J. 610, L29–L32 (2004).

    ADS  Article  Google Scholar 

  16. 16.

    Hajduk, M. et al. The enigma of the oldest ‘nova’: the central star and nebula of CK Vul. Mon. Not. R. Astron. Soc. 378, 1298–1308 (2007).

    ADS  Article  Google Scholar 

  17. 17.

    Hajduk, M., van Hoof, P. A. M. & Zijlstra, A. A. CK Vul: evolving nebula and three curious background stars. Mon. Not. R. Astron. Soc. 432, 167–175 (2013).

    ADS  Article  Google Scholar 

  18. 18.

    Highberger, J. L., Savage, C., Bieging, J. H. & Ziurys, L. M. Heavy‐metal chemistry in proto-planetary nebulae: detection of MgNC, NaCN, and AlF toward CRL 2688. Astrophys. J. 562, 790–798 (2001).

    ADS  Article  Google Scholar 

  19. 19.

    Agúndez, M. et al. Molecular abundances in the inner layers of IRC 10216. Astron. Astrophys. 543, A48 (2012).

    Article  Google Scholar 

  20. 20.

    Andreazza, C. M. & Almeida, A. A. D. The formation of AlF by radiative association. Mon. Not. R. Astron. Soc. 437, 2932–2935 (2013).

    ADS  Article  Google Scholar 

  21. 21.

    Arnould, M., Goriely, S. & Jorissen, A. Non-explosive hydrogen and helium burnings: abundance predictions from the NACRE reaction rate compilation. Astron. Astrophys. 347, 572–582 (1999).

    ADS  Google Scholar 

  22. 22.

    Karakas, A. & Lattanzio, J. C. Stellar models and yields of asymptotic giant branch stars. Publ. Astron. Soc. Aust. 24, 103–117 (2007).

    ADS  Article  Google Scholar 

  23. 23.

    Evans, A. et al. CK Vul: a smorgasbord of hydrocarbons rules out a 1670 nova (and much else besides). Mon. Not. R. Astron. Soc. 457, 2871–2876 (2016).

    ADS  Article  Google Scholar 

  24. 24.

    Karakas, A. I. & Lugaro, M. Stellar yields from metal-rich asymptotic giant branch models. Astrophys. J. 825, 26 (2016).

    ADS  Article  Google Scholar 

  25. 25.

    Politano, M., Sluys, M. V. D., Taam, R. E. & Willems, B. Population synthesis of common envelope mergers. I. Giant stars with stellar or substellar companions. Astrophys. J. 720, 1752–1766 (2010).

    ADS  Article  Google Scholar 

  26. 26.

    Kochanek, C. S., Adams, S. M. & Belczynski, K. Stellar mergers are common. Mon. Not. R. Astron. Soc. 443, 1319–1328 (2014).

    ADS  Article  Google Scholar 

  27. 27.

    Glassgold, A. E. 26Al and circumstellar envelopes. Astrophys. J. 438, L111–L114 (1995).

    ADS  Article  Google Scholar 

  28. 28.

    Indriolo, N. et al. Herschel survey of galactic OH+, H2O+, and H3O+: probing the molecular hydrogen fraction and cosmic-ray ionization rate. Astrophys. J. 800, 40 (2015).

    ADS  Article  Google Scholar 

  29. 29.

    Diehl, R. et al. Radioactive 26Al from massive stars in the Galaxy. Nature 439, 45–47 (2006).

    ADS  Article  Google Scholar 

  30. 30.

    Diehl, R. et al. INTEGRAL/SPI gamma-ray line spectroscopy. Preprint at (2017).

  31. 31.

    Hedderich, H. G. & Bernath, P. F. The infrared emission spectrum of gaseous AlF. J. Mol. Spectrosc. 153, 73–80 (1992).

    ADS  Article  Google Scholar 

  32. 32.

    Hoeft, J., Lovas, F. & Tiemann, E. et al. Microwave absorption spectra of AlF, GaF, InF, and TIF. Z. Naturforsch. A 25, 1029–1035 (2014).

    ADS  Google Scholar 

  33. 33.

    Lide, D. R. High‐temperature microwave spectroscopy. AlF and AlCl. J. Chem. Phys. 42, 1013–1018 (1965).

    ADS  Article  Google Scholar 

  34. 34.

    Western, C. M. PGOPHER: a program for simulating rotational, vibrational and electronic spectra. J. Quant. Spectrosc. Radiat. Transf. 186, 221–242 (2017).

    ADS  Article  Google Scholar 

  35. 35.

    Dunham, J. L. The energy levels of a rotating vibrator. Phys. Rev. 41, 721–731 (1932).

    ADS  Article  Google Scholar 

  36. 36.

    Lutz, J. J. & Hutson, J. M. Deviations from Born–Oppenheimer mass scaling in spectroscopy and ultracold molecular physics. J. Mol. Spectrosc. 330, 43–56 (2016).

    ADS  Article  Google Scholar 

  37. 37.

    McMullin, J. P., Waters, B., Schiebel, D., Young, W. & Golap, K. CASA architecture and applications. In Astronomical Data Analysis Software and Systems XVI (eds Shaw, R. A., Hill, F. & Bell, D. J.) 376 (Conference Series Volume 127, Astronomical Society of the Pacific, 2007).

  38. 38.

    Goodman, J. & Weare, J. Ensemble samplers with affine invariance. Commun. Appl. Math. Comput. Sci. 5, 65–80 (2010).

    MathSciNet  Article  Google Scholar 

  39. 39.

    Foreman-Mackey, D. et al. emcee: the MCMC hammer. Publ. Astron. Soc. Pac 125, 306 (2013).

    ADS  Article  Google Scholar 

  40. 40.

    Goldsmith, P. F. & Langer, W. D. Population diagram analysis of molecular line emission. Astrophys. J. 517, 209–225 (1999).

    ADS  Article  Google Scholar 

  41. 41.

    Gotoum, N., Hammami, K., Owono Owono, L. C. & Jaidane, N.-E. Collision induced rotational excitation of AlF (X1Σ+) by para-H2 (j = 0). Astrophys. Space Sci. 337, 553–561 (2011).

    ADS  Article  Google Scholar 

  42. 42.

    Gotoum, N. et al. Rotational excitation of aluminium monofluoride (AlF) by He atom at low temperature. Astrophys. Space Sci. 332, 209–217 (2010).

    ADS  Article  Google Scholar 

  43. 43.

    Lattanzio, J. C. The asymptotic giant branch evolution of 1.0–3.0 solar mass stars as a function of mass and composition. Astrophys. J. 311, 708 (1986).

    ADS  Article  Google Scholar 

  44. 44.

    Karakas, A. I. Helium enrichment and carbon-star production in metal-rich populations. Mon. Not. R. Astron. Soc. 445, 347–358 (2014).

    ADS  Article  Google Scholar 

  45. 45.

    Young, P. A. et al. Observational tests and predictive stellar evolution. Astrophys. J. 556, 230 (2001).

    ADS  Article  Google Scholar 

Download references


We are grateful to the directors K. Schuster, P. Cox, S. Dougherty, T. van Zeeuw, R. Blundell and T. Beasley for granting us discretionary time at NOEMA, ALMA, APEX, SMA and JVLA. T.K. thanks L. Matrá for an introduction to Markov chain Monte Carlo methods. R.T. acknowledges support from grant 2017/27/B/ST9/01128, financed by the Polish National Science Centre. A.A.B. and T.F.G. acknowledge funding through the DFG priority programme 1573 (Physics of the Interstellar Medium) under grants GI 319/3-1 and GI 319/3-2, and the University of Kassel through P/1052 Programmlinie ‘Zukunft’. K.T.W. acknowledges support from the International Max Planck Research School for Astronomy and Astrophysics at the Universities of Bonn and Cologne, and also from the Bonn–Cologne Graduate School of Physics and Astronomy. This study made use of APEX, which is a collaboration between the Max-Planck-Institut für Radioastronomie, European Southern Observatory and Onsala Space Observatory. Some of the APEX data were collected under the programmes 095.F-9543(A) and 296.D-5009(A). This paper makes use of the following ALMA data: ADS/JAO.ALMA#2015.A.00013.S and #2017.A.00030.S. ALMA is a partnership of ESO (representing its member states), NSF (USA) and NINS (Japan), together with NRC (Canada), NSC and ASIAA (Taiwan), and KASI (Republic of Korea), in cooperation with Chile. The Joint ALMA Observatory is operated by ESO, AUI/NRAO and NAOJ. The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities. The IRAM 30 m observations were carried out under projects 183-14, 161-15 and D07-14, and those with NOEMA under W15BN, E15AE, S16AV and E16AC. IRAM is supported by INSU/CNRS (France), MPG (Germany) and IGN (Spain). The IRAM observations were supported by funding from the European Commission Seventh Framework Programme (FP/2007-2013) under grant agreement number 283393 (RadioNet3).

Author information




T.K. wrote the text and analysed the observations. A.A.B. and T.F.G. prepared the spectroscopic data. J.M.W. prepared, executed and calibrated the NOEMA observations. K.T.W. prepared and reduced the JVLA observations. T.K. prepared and reduced the ALMA and all single-dish observations. N.A.P. prepared and calibrated the SMA observations. R.T. and A.K. ran stellar-evolution models. All authors contributed to the interpretation of the data.

Corresponding author

Correspondence to Tomasz Kamiński.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–2, Supplementary Tables 1–3

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kamiński, T., Tylenda, R., Menten, K.M. et al. Astronomical detection of radioactive molecule 26AlF in the remnant of an ancient explosion. Nat Astron 2, 778–783 (2018).

Download citation


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing