Proton aurorae are a distinct class of auroral phenomena caused by energetic protons precipitating into a planetary atmosphere. The defining observational signature is atomic hydrogen emissions from the precipitating particles after they obtain an electron from the neutral atmospheric gas, a process known as charge exchange. Until now, proton aurorae have been observed at Earth only. Here, we present evidence of auroral activity driven by precipitating protons at Mars, using observations by the MAVEN spacecraft. We observed transient brightening of upper atmospheric hydrogen Lyman-α emission across the Martian dayside correlated with solar wind activity. The driving mechanism is one not found at Earth and originates from energetic neutral atom production by solar wind protons directly interacting with the extended hydrogen corona surrounding Mars. We characterize this new type of Martian aurora and compare the observed emissions with preliminary modelling guided by simultaneous in situ particle measurements. These observations provide insights into how the solar wind can directly deposit energy into the Martian atmosphere as well as all other planetary objects that are surrounded by a substantial neutral corona exposed to the solar wind.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Vegard, L. Hydrogen showers in the auroral region. Nature 144, 1089–1090 (1939).

  2. 2.

    Eather, R. H. Auroral proton precipitation and hydrogen emissions. Rev. Geophys. 5, 207–285 (1967).

  3. 3.

    Gérard, J.-C., Hubert, B., Bisikalo, D. V. & Shematovich, V. I. A model of the Lyman line profile in the proton aurora. J. Geophys. Res. 105, 15795–15806 (2000).

  4. 4.

    Hardy, D. A., Gussenhoven, M. S. & Brautigam, D. A statistical model of auroral ion precipitation. J. Geophys. Res. 94, 370–392 (1989).

  5. 5.

    Kallio, E. & Barabash, S. Atmospheric effects of precipitating energetic hydrogen atoms on the Martian atmosphere. J. Geophys. Res. 106, 165–177 (2001).

  6. 6.

    Frey, H. U. et al. Proton aurora in the cusp. J. Geophys. Res. 107, 1091 (2002).

  7. 7.

    Stephan, A. W., Chakrabarti, S. & Cotton, D. M. Evidence of ENA precipitation in the EUV dayglow. Geophys. Res. Lett. 27, 2865–2868 (2000).

  8. 8.

    Jakosky, B. M. et al. The Mars Atmosphere and Volatile Evolution (MAVEN) mission. Space Sci. Rev. 195, 3–48 (2015).

  9. 9.

    McClintock, W. E. et al. The Imaging Ultraviolet Spectrograph (IUVS) for the MAVEN mission. Space Sci. Rev. 195, 75–124 (2015).

  10. 10.

    Anderson, D. E.Jr & Hord, C. W. Mariner 6 and 7 ultraviolet spectrometer experiment: analysis of hydrogen Lyman-alpha data. J. Geophys. Res. 76, 6666–6673 (1971).

  11. 11.

    Chaufray, J. Y., Bertaux, J. L., Leblanc, F. & Quémerais, E. Observation of the hydrogen corona with SPICAM on Mars Express. Icarus 195, 598–613 (2008).

  12. 12.

    Chaffin, M. S. et al. Three-dimensional structure in the Mars H corona revealed by IUVS on MAVEN. Geophys. Res. Lett. 42, 9001–9008 (2015).

  13. 13.

    Halekas, J. S. et al. The Solar Wind Ion Analyzer for MAVEN. Space Sci. Rev. 195, 125–151 (2015).

  14. 14.

    Halekas, J. S. et al. MAVEN observations of solar wind hydrogen deposition in the atmosphere of Mars. Geophys. Res. Lett. 42, 8901–8909 (2015).

  15. 15.

    Halekas, J. S. Seasonal variability of the hydrogen exosphere of Mars. J. Geophys. Res. 122, 901–911 (2017).

  16. 16.

    Barth, C. A. et al. Mariner 6 and 7 ultraviolet spectrometer experiment: upper atmosphere data. J. Geophys. Res. 76, 2213–2227 (1971).

  17. 17.

    Leblanc, F., Chaufray, J. Y., Lilensten, J., Witasse, O. & Bertaux, J.-L. Martian dayglow as seen by the SPICAM UV spectrograph on Mars Express. J. Geophys. Res. 111, E09S11 (2006).

  18. 18.

    Jain, S. K. et al. The structure and variability of Mars upper atmosphere as seen in MAVEN/IUVS dayglow observations. Geophys. Res. Lett. 42, 9023–9030 (2015).

  19. 19.

    Fang, X., Liemohn, M. W., Kozyra, J. U. & Solomon, S. C. Quantification of the spreading effect of auroral proton precipitation. J. Geophys. Res. 109, A04309 (2004).

  20. 20.

    Fang, X., Lummerzheim, D. & Jackman, C. H. Proton impact ionization and a fast calculation method. J. Geophys. Res. 118, 5369–5378 (2013).

  21. 21.

    Basu, B., Jasperse, J. R., Robinson, R. M., Vondrak, R. R. & Evans, D. S. Linear transport theory of auroral proton precipitation—a comparison with observations. J. Geophys. Res. 92, 5920–5932 (1987).

  22. 22.

    Evans, J. S. et al. Retrieval of CO2 and N2 in the Martian thermosphere using dayglow observations by IUVS on MAVEN. Geophys. Res. Lett. 42, 9040–9049 (2015).

  23. 23.

    Bertaux, J.-L. et al. Discovery of an aurora on Mars. Nature 435, 790–794 (2005).

  24. 24.

    Schneider, N. M. et al. Discovery of diffuse aurora on Mars. Science 350, aad0313 (2015).

  25. 25.

    Kallio, E. S., Luhmann, J. G. & Barabash, S. Charge exchange near Mars: the solar wind absorption and energetic neutral atom production. J. Geophys. Res. 102, 22183–22197 (1997).

  26. 26.

    Diéval, C., Kallio, E., Stenberg, G., Barabash, S. & Jarvinen, R. Hybrid simulations of proton precipitation patterns onto the upper atmosphere of Mars. Earth Planets Space 64, 121–134 (2012).

  27. 27.

    Gunell, H. et al. First ENA observations at Mars: charge exchange ENAs produced in the magnetosheath. Icarus 182, 431–438 (2006).

  28. 28.

    Gombosi, T. I., Cravens, T. E., Nagy, A. F., Elphic, R. C. & Russell, C. T. Solar wind absorption by Venus. J. Geophys. Res. 85, 7747–7753 (1980).

  29. 29.

    Simon Wedlund, C. et al. The atmosphere of comet 67P/Churyumov-Gerasimenko diagnosed by charge-exchanged solar wind alpha particles. Astron. Astrophys. 587, A154 (2016).

  30. 30.

    Bertucci, C. et al. Titan’s interaction with the supersonic solar wind. Geophys. Res. Lett. 42, 193–200 (2015).

  31. 31.

    Vidal-Madjar, A. et al. An extended upper atmosphere around the extrasolar planet HD209458b. Nature 422, 143–146 (2003).

Download references


The MAVEN mission is supported by NASA through the Mars Exploration Program. J.-Y.C., F.M. and F.L. are funded by the programme ‘Systeme Solaire’ of Centre National d’Etudes Spatiales. A.S. is supported by the Belgian Fund for Scientific Research (FNRS).

Author information


  1. Laboratory for Atmospheric and Space Physics, University of Colorado at Boulder, Boulder, CO, USA

    • J. Deighan
    • , S. K. Jain
    • , M. S. Chaffin
    • , X. Fang
    • , N. M. Schneider
    • , A. I. F. Stewart
    • , M. Crismani
    • , W. E. McClintock
    • , G. M. Holsclaw
    •  & B. M. Jakosky
  2. Department of Physics and Astronomy, University of Iowa, Iowa City, IA, USA

    • J. S. Halekas
  3. Center for Space Physics, Boston University, Boston, MA, USA

    • J. T. Clarke
    •  & M. Mayyasi
  4. LATMOS/IPSL, Guyancourt, France

    • J.-Y. Chaufray
    • , F. Montmessin
    •  & F. Lefèvre
  5. Computational Physics, Inc, Springfield, VA, USA

    • J. S. Evans
  6. Space Science Division, Naval Research Laboratory, Washington, DC, USA

    • M. H. Stevens
  7. LPAP, STAR, University of Liège, Liege, Belgium

    • A. Stiepen
  8. LPL, University of Arizona, Tucson, AZ, USA

    • D. Y. Lo


  1. Search for J. Deighan in:

  2. Search for S. K. Jain in:

  3. Search for M. S. Chaffin in:

  4. Search for X. Fang in:

  5. Search for J. S. Halekas in:

  6. Search for J. T. Clarke in:

  7. Search for N. M. Schneider in:

  8. Search for A. I. F. Stewart in:

  9. Search for J.-Y. Chaufray in:

  10. Search for J. S. Evans in:

  11. Search for M. H. Stevens in:

  12. Search for M. Mayyasi in:

  13. Search for A. Stiepen in:

  14. Search for M. Crismani in:

  15. Search for W. E. McClintock in:

  16. Search for G. M. Holsclaw in:

  17. Search for D. Y. Lo in:

  18. Search for F. Montmessin in:

  19. Search for F. Lefèvre in:

  20. Search for B. M. Jakosky in:


J.D., S.K.J. and M.S.C. performed the analysis. X.F. created and ran the precipitating particle transport model used here. J.S.H. provided SWIA measurements and guidance in using them. J.S.E. provided neutral atmosphere airglow retrievals. All authors contributed to the development of the instrument pipeline and/or data acquisition as well as interpretation and presentation of these results.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to J. Deighan.

Supplementary information

  1. Supplementary Information

    Supplementary Figures 1–4

About this article

Publication history