Article | Published:

The Fermi-LAT GeV excess as a tracer of stellar mass in the Galactic bulge

Nature Astronomy (2018) | Download Citation


An anomalous emission component at energies of a few gigaelectronvolts and located towards the inner Galaxy is present in the Fermi-LAT data. At present, the two most promising explanations are the annihilation of dark matter particles or the presence of a large population of unresolved point sources, most probably millisecond pulsars, at the Galactic Centre. Here, we report an analysis of the excess characteristics using almost eight years of Pass 8 ULTRACLEAN Fermi-LAT data with SkyFACT—a tool that combines image reconstruction with template-fitting techniques. We find that an emission profile that traces stellar mass in the boxy and nuclear bulge is preferred over conventional dark matter profiles. A model including the bulge is favoured over a model with dark matter at 16σ.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Goodenough, L. & Hooper, D. Possible evidence for dark matter annihilation in the inner Milky Way from the Fermi Gamma Ray Space Telescope. Preprint at (2009).

  2. 2.

    Daylan, T. et al. The characterization of the gamma-ray signal from the central Milky Way: a case for annihilating dark matter. Phys. Dark Univ. 12, 1–23 (2016).

  3. 3.

    Calore, F., Cholis, I. & Weniger, C. Background model systematics for the Fermi GeV excess. J. Cosmol. Astropart. Phys. 1503, 038 (2015).

  4. 4.

    Ajello, M. et al. Fermi-LAT observations of high-energy gamma-ray emission toward the Galactic Center. Astrophys. J. 819, 44 (2016).

  5. 5.

    Calore, C., Cholis, I., McCabe, C. & Weniger, C. A tale of tails: dark matter interpretations of the Fermi GeV excess in light of background model systematics. Phys. Rev. D91, 063003 (2015).

  6. 6.

    Carlson, E., Linden, T. & Profumo, S. Improved cosmic-ray injection models and the Galactic Center gamma-ray excess. Phys. Rev. D 94, 063504 (2016).

  7. 7.

    Ackermann, M. et al. The Fermi Galactic Center GeV excess and implications for dark matter. Astrophys. J. 840, 43 (2017).

  8. 8.

    Porter, T. A., Johannesson, G. & Moskalenko, I. High-energy gamma rays from the Milky Way: three-dimensional spatial models for the cosmic-ray and radiation field densities in the interstellar medium. Astrophys. J. 846, 67 (2017).

  9. 9.

    Su, M., Slatyer, T. R. & Finkbeiner, D. Giant gamma-ray bubbles from Fermi-LAT: AGN activity or bipolar Galactic wind?. Astrophys. J. 724, 1044–1082 (2010).

  10. 10.

    Ackermann, M. et al. The spectrum and morphology of the Fermi Bubbles. Astrophys. J. 793, 64 (2014).

  11. 11.

    Linden, T., Rodd, N. L., Safdi, B. R. & Slatyer, T. R. High-energy tail of the Galactic Center gamma-ray excess. Phys. Rev. D94, 103013 (2016).

  12. 12.

    Gaggero, D., Taoso, M., Urbano, A., Valli, M. & Ullio, P. Towards a realistic astrophysical interpretation of the gamma-ray Galactic Center excess. J. Cosmol. Astropart. Phys. 1512, 056 (2015).

  13. 13.

    Abazajian, K. N. The consistency of Fermi-LAT observations of the Galactic Center with a millisecond pulsar population in the central stellar cluster. J. Cosmol. Astropart. Phys. 1103, 010 (2011).

  14. 14.

    Yuan, Q. & Zhang, B. Millisecond pulsar interpretation of the Galactic Center gamma-ray excess. J. High Energy Astrophys. 34, 1–8 (2014).

  15. 15.

    Van Haaften, L. M. et al. Population synthesis of ultracompact X-ray binaries in the Galactic bulge. Astron. Astrophys. 552, A69 (2013).

  16. 16.

    Brandt, T. D. & Kocsis, B. Disrupted globular clusters can explain the Galactic Center gamma ray excess. Astrophys. J. 812, 15 (2015).

  17. 17.

    Bartels, R., Krishnamurthy, S. & Weniger, C. Strong support for the millisecond pulsar origin of the Galactic Center GeV excess. Phys. Rev. Lett. 116, 051102 (2016).

  18. 18.

    Lee, S. K., Lisanti, M., Safdi, B. R., Slatyer, T. R. & Xue, W. Evidence for unresolved gamma-ray point sources in the inner galaxy. Phys. Rev. Lett. 116, 051103 (2016).

  19. 19.

    Ajello, M. et al. Characterizing the population of pulsars in the Galactic bulge with the Fermi Large Area Telescope. Preprint at (2017).

  20. 20.

    Bartels, R. et al. Comment on “Characterizing the population of pulsars in the Galactic bulge with the Fermi Large Area Telescope” [arXiv:1705.00009v1]. Preprint at (2017).

  21. 21.

    Caron, S., Gomez-Vargas, G. A., Hendriks, L. & Ruiz de Austri, R. Analyzing γ-rays of the Galactic Center with deep learning. J. Cosmol. Astropart. Phys. 1805, 058 (2018).

  22. 22.

    Calore, F., Di Mauro, M., Donato, F., Hessels, J. W. T. & Weniger, C. Radio detection prospects for a bulge population of millisecond pulsars as suggested by Fermi LAT observations of the inner Galaxy. Astrophys. J. 827, 143 (2016).

  23. 23.

    Shen, J. & Li, Z. Y. Theoretical models of the Galactic bulge. Galact. Bulges 418, 233 (2016).

  24. 24.

    Cao, L., Mao, S., Nataf, D., Rattenbury, N. J. & Gould, A. A new photometric model of the Galactic bar using red clump giants. Mon. Not. R. Astron. Soc. 434, 595–605 (2013).

  25. 25.

    Portail, M., Gerhard, O., Wegg, C. & Ness, M. Dynamical modelling of the Galactic bulge and bar: the Milky Way’s pattern speed, stellar and dark matter mass distribution. Mon. Not. R. Astron. Soc. 465, 1621–1644 (2017).

  26. 26.

    McMillan, P. J. Mass models of the Milky Way. Mon. Not. R. Astron. Soc. 414, 2446–2457 (2011).

  27. 27.

    Licquia, T. C. & Newman, J. A. Improved estimates of the Milky Way’s stellar mass and star formation rate from hierarchical Bayesian meta-analysis. Astrophys. J. 806, 96 (2015).

  28. 28.

    Wegg, C., Gerhard, O. & Portail, M. The structure of the Milky Way’s bar outside the bulge. Mon. Not. R. Astron. Soc. 450, 4050–4069 (2015).

  29. 29.

    Serabyn, E. & Morris, M. Sustained star formation in the central stellar cluster of the Milky Way. Nature 382, 602–604 (1996).

  30. 30.

    Launhardt, R., Zylka, R. & Mezger, P. G. The nuclear bulge of the galaxy. 3. Large scale physical characteristics of stars and interstellar matter. Astron. Astrophys. 384, 112–139 (2002).

  31. 31.

    Kunder, A. et al. Before the bar: kinematic detection of a spheroidal metal-poor bulge component. Astrophys. J. 821, L25 (2016).

  32. 32.

    McWilliam, A. & Zoccali, M. Two red clumps and the X-shaped Milky Way bulge. Astrophys. J. 724, 1491–1502 (2010).

  33. 33.

    Nataf, D. M., Udalski, A., Gould, A., Fouque, P. & Stanek, K. Z. The split red clump of the Galactic bulge from OGLE-III. Astrophys. J. 721, L28–L32 (2010).

  34. 34.

    Li, Z. Y. & Shen, J. The vertical X-shaped structure in the Milky Way: evidence from a simple boxy bulge model. Astrophys. J. 757, L7 (2012).

  35. 35.

    Portail, M., Wegg, C. & Gerhard, O. Peanuts, brezels and bananas: food for thought on the orbital structure of the Galactic bulge. Mon. Not. R. Astron. Soc. 450, L66–L70 (2015).

  36. 36.

    Macias, O. et al. Galactic bulge preferred over dark matter for the Galactic Centre gamma-ray excess. Nat. Astron. 2, 387–392 (2018).

  37. 37.

    Storm, E., Weniger, C. & Calore, C. SkyFACT: high-dimensional modeling of gamma-ray emission with adaptive templates and penalized likelihoods. J. Cosmol. Astropart. Phys. 1708, 022 (2017).

  38. 38.

    Navarro, J. F., Frenk, C. S. & White, S. D. M. A universal density profile from hierarchical clustering. Astrophys. J. 490, 493–508 (1997).

  39. 39.

    Einasto, J. On the construction of a composite model for the Galaxy and on the determination of the system of Galactic parameters. Tr. Astrofiz. Inst. Alma-Ata 5, 87–100 (1965).

  40. 40.

    Siegert, T. et al. Gamma-ray spectroscopy of positron annihilation in the Milky Way. Astron. Astrophys. 586, A84 (2016).

  41. 41.

    Ness, M. & Lang, D. The X-shaped bulge of the Milky Way revealed by WISE. Astron. J. 152, 14 (2016).

  42. 42.

    McCann, A. A stacked analysis of 115 pulsars observed by the Fermi LAT. Astrophys. J. 804, 86 (2015).

  43. 43.

    Carlson, E., Linden, T. & Profumo, S. Cosmic-ray injection from star-forming regions. Phys. Rev. Lett. 117, 111101 (2016).

  44. 44.

    Portail, M., Wegg, C., Gerhard, O. & Martinez-Valpuesta, I. Made-to-measure models of the Galactic Box/Peanut bulge: stellar and total mass in the bulge region. Mon. Not. R. Astron. Soc. 448, 713–731 (2015).

  45. 45.

    Ackermann, M. et al. Observations of M31 and M33 with the Fermi Large Area Telescope: a Galactic Center excess in Andromeda?. Astrophys. J. 836, 208 (2017).

  46. 46.

    Acero, F. et al. Fermi Large Area Telescope third source catalog. Astrophys. J. Suppl. 218, 23 (2015).

  47. 47.

    Manchester, R. N., Hobbs, G. B., Teoh, A. & Hobbs, M. The Australia Telescope National Facility pulsar catalogue. Astron. J. 129, 1993 (2005).

  48. 48.

    Knodlseder, J. et al. The all-sky distribution of 511 keV electron-positron annihilation emission. Astron. Astrophys. 441, 513–532 (2005).

  49. 49.

    Strong, A. W. Source population synthesis and the Galactic diffuse gamma-ray emission. Astrophys. Space Sci. 309, 35–41 (2007).

  50. 50.

    Winter, M., Zaharijas, G., Bechtol, K. & Vandenbroucke, J. Estimating the GeV emission of millisecond pulsars in dwarf spheroidal galaxies. Astrophys. J. 832, L6 (2016).

  51. 51.

    Gillessen, S. et al. Monitoring stellar orbits around the massive black hole in the Galactic Center. Astrophys. J. 692, 1075–1109 (2009).

  52. 52.

    Bouchet, L., Roques, J. P. & Jourdain, E. On the morphology of the electron–positron annihilation emission as seen by SPI/INTEGRAL. Astrophys. J. 720, 1772–1780 (2010).

  53. 53.

    Skinner, G., Diehl, R., Zhang, X. L., Bouchet, L. & Jean, P. The Galactic distribution of the 511 keV e+/e annihilation radiation In Proc. 10th INTEGRAL Workshop: A Synergistic View of the High-Energy Sky (Proceedings of Science, 2014).

  54. 54.

    Nataf, D. M. et al. Reddening and extinction toward the Galactic bulge from OGLE-III: the inner Milky Way’s Rv 2.5 extinction curve. Astrophys. J. 769, 88 (2013).

  55. 55.

    Dwek, E. et al. Morphology, near infrared luminosity, and mass of the Galactic bulge from COBE DIRBE observations. Astrophys. J. 445, 716 (1995).

  56. 56.

    Freudenreich, H. T. COBE’s Galactic bar and disk. Astrophys. J. 492, 495–510 (1998).

  57. 57.

    Simion, I. T. et al. A parametric description of the 3D structure of the Galactic bar/bulge using the VVV survey. Mon. Not. R. Astron. Soc. 471, 4323–4344 (2017).

  58. 58.

    Lang, D. unWISE: unblurred coadds of the WISE imaging. Astron. J. 147, 108 (2014).

  59. 59.

    Graham, A. W., Merritt, D., Moore, B., Diemand, J. & Terzic, B. Empirical models for dark matter halos. I. Nonparametric construction of density profiles and comparison with parametric models. Astron. J. 132, 2685–2700 (2006).

  60. 60.

    Navarro, J. F. et al. The diversity and similarity of cold dark matter halos. Mon. Not. R. Astron. Soc. 402, 21 (2010).

  61. 61.

    Byrd, R. H., Lu, P., Nocedal, J. & Zhu, C. A limited memory algorithm for bound constrained optimization. SIAM J. Sci. Comput. 16, 1190–1208 (1995).

  62. 62.

    Zhu, C., Byrd, R. H., Lu, P. & Nocedal, J. Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound-constrained optimization. ACM Trans. Math. Softw. 23, 550–560 (1997).

  63. 63.

    Morales, J. L. & Nocedal, J. Remark on “Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound constrained optimization”. ACM Trans. Math. Softw. 38, 7 (2011).

  64. 64.

    Edwards, T. D. P. & Weniger, C. A fresh approach to forecasting in astroparticle physics and dark matter searches. Preprint at (2017).

  65. 65.

    Ackermann, M. et al. Fermi-LAT observations of the diffuse gamma-ray emission: implications for cosmic rays and the interstellar medium. Astrophys. J. 750, 3 (2012).

  66. 66.

    Evoli, C., Gaggero, D., Grasso, D. & Maccione, L. Cosmic-ray nuclei, antiprotons and gamma-rays in the Galaxy: a new diffusion model. J. Cosmol. Astropart. Phys. 0810, 018 (2008).

  67. 67.

    Evoli, C., Gaggero, D., Grasso, D. & Maccione, L. A common solution to the cosmic ray anisotropy and gradient problems. Phys. Rev. Lett. 108, 211102 (2012).

  68. 68.

    Di Bernardo, G., Evoli, C., Gaggero, D., Grasso, D. & Maccione, L. Cosmic ray electrons, positrons and the synchrotron emission of the Galaxy: consistent analysis and implications. J. Cosmol. Astropart. Phys. 1303, 036 (2013).

  69. 69.

    Ferriere, K. M. The interstellar environment of our galaxy. Rev. Mod. Phys. 73, 1031–1066 (2001).

  70. 70.

    Porter, T. A. & Strong, A. W. A new estimate of the Galactic interstellar radiation field between 0.1 microns and 1000 microns. In Proc. 29th International Cosmic Ray Conference 4, 77–80 (Tata Institute of Fundamental Research, 2005).

  71. 71.

    Ackermann, M. et al. The spectrum of isotropic diffuse gamma-ray emission between 100 MeV and 820 GeV. Astrophys. J. 799, 86 (2015).

  72. 72.

    Algeri, S., Conrad, J. & van Dyk, D. A. A method for comparing non-nested models with application to astrophysical searches for new physics. Mon. Not. R. Astron. Soc. 458, L84–L88 (2016).

  73. 73.

    Wilks, S. S. The large-sample distribution of the likelihood ratio for testing composite hypotheses. Ann. Math. Stat. 9, 60–62 (1938).

  74. 74.

    Chernoff, H. On the distribution of the likelihood ratio. Ann. Math. Stat. 25, 573–578 (1954).

  75. 75.

    Self, S. A. & Liang, K. Y. Asymptotic properties of maximum likelihood estimators and likelihood ratio tests under nonstandard conditions. J. Am. Stat. Assoc. 82, 605–610 (1987).

  76. 76.

    Cox, D. R. Further results on tests of separate families of hypotheses. J. R. Stat. Soc. B 24, 406–424 (1962).

  77. 77.

    Lorimer, D. R. The Galactic population and birth rate of radio pulsars in young neutron stars and their environments. In IAU Symposium 218 (Astronomical Society of the Pacific, 2004).

  78. 78.

    Levin, L. et al. The High Time Resolution Universe Pulsar Survey VIII: the Galactic millisecond pulsar population. Mon. Not. R. Astron. Soc. 434, 1387 (2013).

  79. 79.

    Calore, F., Di Mauro, M. & Donato, F. Diffuse gamma-ray emission from Galactic pulsars. Astrophys. J. 796, 1 (2014).

  80. 80.

    Venter, C., Johnson, T. J., Harding, A. K. & Grove, J. E. Modelling the light curves of Fermi LAT millisecond pulsars. In Proc. 58th Annual Conference of the South African Institute of Physics 385–390 (The South African Institute of Physics, 2014).

  81. 81.

    Eckner, C. et al. Millisecond pulsar origin of the Galactic Center excess and extended gamma-ray emission from Andromeda—a closer look. Preprint at (2017).

  82. 82.

    Zechlin, H. S., Cuoco, A., Donato, F., Fornengo, N. & Vittino, A. Unveiling the gamma-ray source count distribution below the Fermi detection limit with photon statistics. Astrophys. J. Suppl. 225, 18 (2016).

  83. 83.

    Zechlin, H. S., Cuoco, A., Donato, F., Fornengo, N. & Regis, M. Statistical measurement of the gamma-ray source-count distribution as a function of energy. Astrophys. J. 826, L31 (2016).

  84. 84.

    Zechlin, H. S., Manconi, S. & Donato, F. Constraining Galactic dark matter with gamma-ray pixel counts statistics. Preprint at (2017).

  85. 85.

    Jouvin, L., Lemiere, A. & Terrier, R. Does the SN rate explain the very high energy cosmic rays in the central 200 pc of our Galaxy?. Mon. Not. R. Astron. Soc. 467, 4622–4630 (2017).

  86. 86.

    Strong, A. W. et al. Global cosmic-ray related luminosity and energy budget of the Milky Way. Astrophys. J. 722, L58–L63 (2010).

  87. 87.

    Huang, X., Enlin, T. & Selig, M. Galactic dark matter search via phenomenological astrophysics modeling. J. Cosmol. Astropart. Phys. 1604, 030 (2016).

  88. 88.

    Tamm, A., Tempel, E., Tenjes, P., Tihhonova, O. & Tuvikene, T. Stellar mass map and dark matter distribution in M31. Astron. Astrophys. 546, A4 (2012).

  89. 89.

    De Angelis, A. et al. The e-ASTROGAM mission. Exp. Astron. 44, 25–82 (2017).

Download references


We thank L. Athanassoula, D. Berge, G. Bertone, I. Cholis, R. Crocker, O. Macias, P. Serpico, T. Slatyer, A. Strong, J. Vink and G. Zaharijas for useful discussions. We acknowledge D. Gaggero for support provided with the DRAGON code. R.B. thanks the organizers and participants of the TeVPA 2017 mini workshop on the GCE for a fruitful discussion. Part of this work was carried out on the Dutch national e-infrastructure with the support of SURF Cooperative. This research is funded by NWO through the Vidi research programme ‘Probing the Genesis of Dark Matter’ (680-47-532; to E.S. and C.W.), and through a GRAPPA-PhD fellowship (022.004.017; to R.B.). F.C. acknowledges support from the Agence Nationale de la Recherche under the contract ANR-15-IDEX-02 (project ‘Unveiling the Galactic Centre Mystery’; GCEM (principal investigator: F.C.)).

Author information


  1. GRAPPA and Institute for Theoretical Physics Amsterdam, University of Amsterdam, Amsterdam, The Netherlands

    • Richard Bartels
    • , Emma Storm
    •  & Christoph Weniger
  2. University of Grenoble Alpes, USMB, CNRS, LAPTh, Annecy, France

    • Francesca Calore


  1. Search for Richard Bartels in:

  2. Search for Emma Storm in:

  3. Search for Christoph Weniger in:

  4. Search for Francesca Calore in:


All authors contributed equally to the intellectual content of the paper.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Richard Bartels.

Supplementary information

  1. Supplementary Information

    Supplementary Tables 1–2, Supplementary Figures 1–3, Supplementary References

About this article

Publication history