Galaxy clusters form at the highest-density nodes of the cosmic web1,2. The clustering of dark matter halos hosting these galaxy clusters is enhanced relative to the general mass distribution, with the matter density beyond the virial region being strongly correlated to the halo mass (halo bias)3. Halo properties other than mass can further enhance the halo clustering (secondary bias)4,5,6,7. Observational campaigns have ascertained the halo bias8,9,10, but efforts to detect this secondary bias for massive halos have been inconclusive11,12,13. Here, we report the analysis of the environment bias in a sample of massive clusters, selected through the Sunyaev–Zel’dovich effect by the Planck mission14,15, focusing on the detection of the environment dark matter correlated to a single cluster, PSZ2 G099.86+58.45. The gravitational lensing signal of the outskirts is very large and can be traced up to 30 megaparsecs with a high signal-to-noise ratio (about 3.4), implying environment matter density in notable excess of the cosmological mean. Our finding reveals this system to be extremely rare in the current paradigm of structure formation and, implies that enhancing mechanisms around high-mass halos can be very effective. Future lensing surveys will probe the surroundings of single haloes, enabling the study of their formation and evolution of structure.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from $8.99

All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Kaiser, N. On the spatial correlations of Abell clusters. Astrophys. J. 284, L9–L12 (1984).

  2. 2.

    Sheth, R. K. & Tormen, G. On the environmental dependence of halo formation. Mon. Not. R. Astron. Soc. 350, 1385–1390 (2004).

  3. 3.

    Tinker, J. L. et al. The large-scale bias of dark matter halos: numerical calibration and model tests. Astrophys. J. 724, 878–886 (2010).

  4. 4.

    Wechsler, R. H., Zentner, A. R., Bullock, J. S., Kravtsov, A. V. & Allgood, B. The dependence of halo clustering on halo formation history, concentration, and occupation. Astrophys. J. 652, 71–84 (2006).

  5. 5.

    Dalal, N., White, M., Bond, J. R. & Shirokov, A. Halo assembly bias in hierarchical structure formation. Astrophys. J. 687, 12–21 (2008).

  6. 6.

    Li, Y., Mo, H. J. & Gao, L. On halo formation times and assembly bias. Mon. Not. R. Astron. Soc. 389, 1419–1426 (2008).

  7. 7.

    Mao, Y.-Y., Zentner, A. R. & Wechsler, R. H. Beyond assembly bias: exploring secondary halo biases for cluster-size haloes. Mon. Not. R. Astron. Soc. 474, 5143–5157 (2018).

  8. 8.

    Johnston, D. E. et al. Cross-correlation weak lensing of SDSS galaxy clusters II: cluster density profiles and the mass–richness relation. Preprint at https://arxiv.org/abs/0709.1159 (2007).

  9. 9.

    Sereno, M. et al. New constraints on σ 8 from a joint analysis of stacked gravitational lensing and clustering of galaxy clusters. Mon. Not. R. Astron. Soc. 449, 4147–4161 (2015).

  10. 10.

    Dvornik, A. et al. A KiDS weak lensing analysis of assembly bias in GAMA galaxy groups. Mon. Not. R. Astron. Soc. 468, 3251–3265 (2017).

  11. 11.

    More, S. et al. Detection of the splashback radius and halo assembly bias of massive galaxy clusters. Astrophys. J. 825, 39 (2016).

  12. 12.

    Zu, Y., Mandelbaum, R., Simet, M., Rozo, E. & Rykoff, E. S. On the level of cluster assembly bias in SDSS. Mon. Not. R. Astron. Soc. 470, 551–560 (2017).

  13. 13.

    Busch, P. & White, S. D. M. Assembly bias and splashback in galaxy clusters. Mon. Not. R. Astron. Soc. 470, 4767–4781 (2017).

  14. 14.

    Planck Collaboration et al. Planck2015 results. XXVII. The second Planck catalogue of Sunyaev–Zeldovich sources. Astron. Astrophys. 594, A27 (2016).

  15. 15.

    Sereno, M. et al. PSZ2LenS. Weak lensing analysis of the Planck clusters in the CFHTLenS and in the RCSLenS. Mon. Not. R. Astron. Soc. 472, 1946–1971 (2017).

  16. 16.

    Oguri, M. & Takada, M. Combining cluster observables and stacked weak lensing to probe dark energy: self-calibration of systematic uncertainties. Phys. Rev. D. 83, 023008 (2011).

  17. 17.

    Rossetti, M. et al. Measuring the dynamical state of Planck SZ-selected clusters: X-ray peak - BCG offset. Mon. Not. R. Astron. Soc. 457, 4515–4524 (2016).

  18. 18.

    Heymans, C. et al. CFHTLenS: the Canada–France–Hawaii Telescope Lensing Survey. Mon. Not. R. Astron. Soc. 427, 146–166 (2012).

  19. 19.

    Hildebrandt, H. et al. RCSLenS: the Red Cluster Sequence Lensing Survey. Mon. Not. R. Astron. Soc. 463, 635–654 (2016).

  20. 20.

    Erben, T. et al. CFHTLenS: the Canada–France–Hawaii Telescope Lensing Survey—imaging data and catalogue products. Mon. Not. R. Astron. Soc. 433, 2545–2563 (2013).

  21. 21.

    Miller, L. et al. Bayesian galaxy shape measurement for weak lensing surveys — III. Application to the Canada–France–Hawaii Telescope Lensing Survey. Mon. Not. R. Astron. Soc. 429, 2858–2880 (2013).

  22. 22.

    Hildebrandt, H. et al. CFHTLenS: improving the quality of photometric redshifts with precision photometry. Mon. Not. R. Astron. Soc. 421, 2355–2367 (2012).

  23. 23.

    Benjamin, J. et al. CFHTLenS tomographic weak lensing: quantifying accurate redshift distributions. Mon. Not. R. Astron. Soc. 431, 1547–1564 (2013).

  24. 24.

    Colberg, J. M., Krughoff, K. S. & Connolly, A. J. Intercluster filaments in a ΛCDM Universe. Mon. Not. R. Astron. Soc. 359, 272–282 (2005).

  25. 25.

    Eckert, D. et al. Warm-hot baryons comprise 5-10 per cent of filaments in the cosmic web. Nature 528, 105–107 (2015).

  26. 26.

    Navarro, J. F., Frenk, C. S. & White, S. D. M. The structure of cold dark matter halos. Astrophys. J. 462, 563–575 (1996).

  27. 27.

    Meneghetti, M. et al. The MUSIC of CLASH: predictions on the concentration-mass relation. Astrophys. J. 797, 34 (2014).

  28. 28.

    Diemer, B., Mansfield, P., Kravtsov, A. V. & More, S. The splashback radius of halos from particle dynamics. II. Dependence on mass, accretion rate, redshift, and cosmology. Astrophys. J. 843, 140 (2017).

  29. 29.

    Schneider, P., van Waerbeke, L., Jain, B. & Kruse, G. A new measure for cosmic shear. Mon. Not. R. Astron. Soc. 296, 873–892 (1998).

  30. 30.

    Monaco, P. et al. An accurate tool for the fast generation of dark matter halo catalogues. Mon. Not. R. Astron. Soc. 433, 2389–2402 (2013).

  31. 31.

    Viola, M. et al. Dark matter halo properties of GAMA galaxy groups from 100 square degrees of KiDS weak lensing data. Mon. Not. R. Astron. Soc. 452, 3529–3550 (2015).

  32. 32.

    Oguri, M. et al. Combined strong and weak lensing analysis of 28 clusters from the Sloan Giant Arcs Survey. Mon. Not. R. Astron. Soc. 420, 3213–3239 (2012).

  33. 33.

    Covone, G., Sereno, M., Kilbinger, M. & Cardone, V. F. Measurement of the halo bias from stacked shear profiles of galaxy clusters. Astrophys. J. Lett. 784, L25 (2014).

  34. 34.

    Baltz, E. A., Marshall, P. & Oguri, M. Analytic models of plausible gravitational lens potentials. J. Cosmol. Astropart. Phys. 1, 15 (2009).

  35. 35.

    Oguri, M. & Hamana, T. Detailed cluster lensing profiles at large radii and the impact on cluster weak lensing studies. Mon. Not. R. Astron. Soc. 414, 1851–1861 (2011).

  36. 36.

    Sheth, R. K. & Tormen, G. Large-scale bias and the peak background split. Mon. Not. R. Astron. Soc. 308, 119–126 (1999).

  37. 37.

    Bhattacharya, S., Habib, S., Heitmann, K. & Vikhlinin, A. Dark matter halo profiles of massive clusters: theory versus observations. Astrophys. J. 766, 32 (2013).

  38. 38.

    Eisenstein, D. J. & Hu, W. Power spectra for cold dark matter and its variants. Astrophys. J. 511, 5–15 (1999).

  39. 39.

    Hoekstra, H. How well can we determine cluster mass profiles from weak lensing? Mon. Not. R. Astron. Soc. 339, 1155–1162 (2003).

  40. 40.

    Smith, R. E. et al. Stable clustering, the halo model and non-linear cosmological power spectra. Mon. Not. R. Astron. Soc. 341, 1311–1332 (2003).

  41. 41.

    Sereno, M., Giocoli, C., Ettori, S. & Moscardini, L. The mass-concentration relation in lensing clusters: the role of statistical biases and selection effects. Mon. Not. R. Astron. Soc. 449, 2024–2039 (2015).

  42. 42.

    Mandelbaum, R., Seljak, U. & Hirata, C. M. A halo mass-concentration relation from weak lensing. J. Cosmol. Astropart. Phys. 8, 006 (2008).

  43. 43.

    Okabe, N., Smith, G. P., Umetsu, K., Takada, M. & Futamase, T. LoCuSS: the mass density profile of massive galaxy clusters at z = 0.2. Astrophys. J. 769, L35 (2013).

  44. 44.

    Umetsu, K. et al. CLASH: weak-lensing shear-and-magnification analysis of 20 galaxy clusters. Astrophys. J. 795, 163 (2014).

  45. 45.

    Jarvis, M. et al. The DES science verification weak lensing shear catalogues. Mon. Not. R. Astron. Soc. 460, 2245–2281 (2016).

  46. 46.

    Sereno, M., Fedeli, C. & Moscardini, L. Comparison of weak lensing by NFW and Einasto halos and systematic errors. J. Cosmol. Astropart. Phys. 1, 042 (2016).

  47. 47.

    Bridle, S. & King, L. Dark energy constraints from cosmic shear power spectra: impact of intrinsic alignments on photometric redshift requirements. New J. Phys. 9, 444 (2007).

  48. 48.

    Heymans, C. et al. CFHTLenS tomographic weak lensing cosmological parameter constraints: mitigating the impact of intrinsic galaxy alignments. Mon. Not. R. Astron. Soc. 432, 2433–2453 (2013).

  49. 49.

    Miyatake, H. et al. The weak lensing signal and the clustering of BOSS galaxies. I. Measurements. Astrophys. J. 806, 1 (2015).

  50. 50.

    Hinshaw, G. et al. Nine-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological parameter results. Astrophys. J. Suppl. Ser. 208, 19 (2013).

  51. 51.

    Munari, E. et al. Improving fast generation of halo catalogues with higher order Lagrangian perturbation theory. Mon. Not. R. Astron. Soc. 465, 4658–4677 (2017).

  52. 52.

    Giocoli, C., Meneghetti, M., Bartelmann, M., Moscardini, L. & Boldrin, M. MOKA: a new tool for strong lensing studies. Mon. Not. R. Astron. Soc. 421, 3343–3355 (2012).

  53. 53.

    Giocoli, C. et al. Fast weak-lensing simulations with halo model. Mon. Not. R. Astron. Soc. 470, 3574–3590 (2017).

  54. 54.

    Snowden, S. L., Mushotzky, R. F., Kuntz, K. D. & Davis, D. S. A catalog of galaxy clusters observed by XMM-Newton. Astron. Astrophys. 478, 615–658 (2008).

  55. 55.

    Arnaud, K. A. in Astron. Soc. Pacific Conf. Proc. Vol. 101 Astronomical Data Analysis Software and Systems V (eds Jacoby, G. H. & Barnes, J.) 17 (ASP, 1996).

  56. 56.

    Kuntz, K. D. & Snowden, S. L. The X-ray-emitting components toward ℓ = 111°: the local hot bubble and beyond. Astrophys. J. 674, 209–219 (2008).

  57. 57.

    Takey, A., Schwope, A. & Lamer, G. The 2XMMi/SDSS galaxy cluster survey. I. The first cluster sample and X-ray luminosity-temperature relation. Astron. Astrophys. 534, A120 (2011).

  58. 58.

    Vikhlinin, A. et al. Chandra cluster cosmology project. II. Samples and X-ray data reduction. Astrophys. J. 692, 1033–1059 (2009).

  59. 59.

    Planck Collaboration. Planck intermediate results. XXXVI. Optical identification and redshifts of Planck SZ sources with telescopes at the Canary Islands observatories. Astron. Astrophys. 586, A139 (2016).

  60. 60.

    Alam, S. et al. The eleventh and twelfth data releases of the Sloan Digital Sky Survey: final data from SDSS-III. Astrophys. J. Suppl. Ser. 219, 12 (2015).

  61. 61.

    Tody, D. in Proc. SPIE Vol. 627: Instrumentation in Astronomy VI (ed. Crawford, D. L.) 733 (SPIE, 1986).

  62. 62.

    Tonry, J. & Davis, M. A survey of galaxy redshifts. I — Data reduction techniques. Astron. J. 84, 1511–1525 (1979).

  63. 63.

    Kennicutt, R. C. Jr. A spectrophotometric atlas of galaxies. Astrophys. J. Suppl. Ser. 79, 255–284 (1992).

  64. 64.

    McGreer, I. D. et al. A bright lensed galaxy at z = 5.4 with strong Lyα emission. Preprint at https://arxiv.org/abs/1706.09428 (2017).

  65. 65.

    Beers, T. C., Flynn, K. & Gebhardt, K. Measures of location and scale for velocities in clusters of galaxies — a robust approach. Astron. J. 100, 32–46 (1990).

  66. 66.

    Sifón, C. et al. The Atacama Cosmology Telescope: dynamical masses for 44 SZ-selected galaxy clusters over 755 square degrees. Mon. Not. R. Astron. Soc. 461, 248–270 (2016).

  67. 67.

    Evrard, A. E. et al. Virial scaling of massive dark matter halos: why clusters prefer a high normalization cosmology. Astrophys. J. 672, 122–137 (2008).

Download references


We thank J. A. R. Martín for coordinating the spectroscopic campaign and L. D’Avino for suggestions on the rendering of Fig. 1. S.E. and M.S. acknowledge financial support from contracts ASI-INAF I/009/10/0, NARO15 ASI-INAF I/037/12/0, ASI 2015-046-R.0 and ASI-INAF n.2017-14-H.0. C.G. acknowledges support from the Italian Ministry for Education, University, and Research (MIUR) through the SIR individual grant SIMCODE, project number RBSI14P4IH, and the Italian Ministry of Foreign affairs and International Cooperation, Directorate General for Country Promotion for Country Promotion. L.I. acknowledges support from the Spanish research project AYA 2014-58381-P. L.M. acknowledges support from the grants ASI n.I/023/12/0 and PRIN MIUR 2015. A.F., A.S. and R.B. acknowledge financial support from the Spanish Ministry of Economy and Competitiveness (MINECO) under AYA 2014-60438-P, ESP2013-48362-C2-1-P and the 2011 Severo Ochoa Program MINECO SEV-2011-0187 projects. This article includes observations made with the Gran Telescopio Canarias (GTC) operated by Instituto de Astrofísica de Canarias (IAC) with telescope time awarded by the CCI International Time Programme at the Canary Islands observatories (programme ITP13-8). The simulations were run on the Marconi supercomputer at Cineca thanks to the projects IsC10_MOKAlen3 and IsC49_ClBra01.

Author information


  1. INAF - Osservatorio di Astrofisica e Scienza dello Spazio di Bologna, Bologna, Italy

    • Mauro Sereno
    • , Carlo Giocoli
    • , Federico Marulli
    • , Stefano Ettori
    •  & Lauro Moscardini
  2. Dipartimento di Fisica e Astronomia, Alma Mater Studiorum – Università di Bologna, Bologna, Italy

    • Mauro Sereno
    • , Carlo Giocoli
    • , Federico Marulli
    • , Alfonso Veropalumbo
    •  & Lauro Moscardini
  3. INFN, Sezione di Bologna, Bologna, Italy

    • Carlo Giocoli
    • , Federico Marulli
    • , Alfonso Veropalumbo
    • , Stefano Ettori
    •  & Lauro Moscardini
  4. Instituto de Astrofìsica de Andalucìa (IAA-CSIC), Granada, Spain

    • Luca Izzo
  5. Dipartimento di Fisica, Università di Napoli ‘Federico II’, Compl. Univers. di Monte S. Angelo, Napoli, Italy

    • Giovanni Covone
  6. INFN, Sezione di Napoli, Compl. Università di Monte S. Angelo, Napoli, Italy

    • Giovanni Covone
  7. Instituto de Astrofísica de Canarias (IAC), Tenerife, Spain

    • Antonio Ferragamo
    • , Rafael Barrena
    •  & Alina Streblyanska
  8. Universidad de La Laguna, Departamento de Astrofísica, C/ Astrofísico Francisco Sánchez s/n, Tenerife, Spain

    • Antonio Ferragamo
    • , Rafael Barrena
    •  & Alina Streblyanska


  1. Search for Mauro Sereno in:

  2. Search for Carlo Giocoli in:

  3. Search for Luca Izzo in:

  4. Search for Federico Marulli in:

  5. Search for Alfonso Veropalumbo in:

  6. Search for Stefano Ettori in:

  7. Search for Lauro Moscardini in:

  8. Search for Giovanni Covone in:

  9. Search for Antonio Ferragamo in:

  10. Search for Rafael Barrena in:

  11. Search for Alina Streblyanska in:


All authors contributed to the interpretation and presentation of the results. M.S.: lead author; project concept, planning, and design; writing; lensing, statistical, and cosmological analyses. C.G.: numerical simulations. L.I.: X-ray analysis. F.M. and A.V.: cosmological analysis. S.E. and L.M.: planning and interpretation. G.C.: cluster sample selection. A.F., A.S. and R.B.: galaxy kinematics.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Mauro Sereno.

Supplementary information

  1. Supplementary Information

    Supplementary Figures 1–5, Supplementary Tables 1–2

About this article

Publication history