Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A universal route for the formation of massive star clusters in giant molecular clouds

Abstract

Young massive clusters (M ≥ 104Mʘ) are proposed modern-day analogues of the globular clusters that were products of extreme star formation in the early Universe1,2,3,4. The exact conditions and mechanisms under which young massive clusters form remain unknown4,5—a fact further complicated by the extreme radiation fields produced by their numerous young stars6,7,8,9. Here, we show that massive clusters are naturally produced in radiation-hydrodynamic simulations of isolated 107Mʘ giant molecular clouds with properties typical of the local Universe, even under the influence of radiative feedback. In all cases, these massive clusters grow to globular cluster masses within 5 million years (Myr) via a roughly equal combination of filamentary gas accretion and mergers with less massive clusters. Lowering the heavy-element abundance of the molecular cloud by a factor of ten reduces the opacity of the gas and better represents the high-redshift Universe10,11. This results in higher gas accretion, leading to a mass increase of the largest cluster by a factor of around four. When combined with simulations of less massive molecular clouds12 (104–6Mʘ), a clear relation emerges between the maximum cluster mass and the mass of the host cloud13. Our results indicate that young massive clusters—and potentially globular clusters—are simple power-law extensions of local cluster formation, and are insensitive to star formation thresholds. A universal picture emerges without the need for exotic formation scenarios1315.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Formation of the most massive star cluster and its merging partners.
Fig. 2: Accretion-merger histories of the YMCs.
Fig. 3: Gaseous flow rate in the vicinity of the YMCs.
Fig. 4: Maximum cluster mass produced by a given GMC mass.

Similar content being viewed by others

References

  1. Kruijssen, J. M. D. Globular clusters as the relics of regular star formation in ‘normal’ high-redshift galaxies. Mon. Not. R. Astron. Soc. 454, 1658–1686 (2015).

    Article  ADS  Google Scholar 

  2. Longmore, S. N. et al. in Protostars and Planets VI 291–314 (Univ. Arizona Press, Tucson, AZ, 2014).

  3. Portegies Zwart, S. F., McMillan, S. L. W. & Gieles, M. Young massive star clusters. Annu. Rev. Astron. Astrophys. 48, 431–493 (2010).

    Article  ADS  Google Scholar 

  4. Bastian, N. in Stellar Clusters: Benchmarks of Stellar Physics and Galactic Evolution – EES2015 Vol. 80–81 (eds Moraux, E., Lebreton, Y. & Charbonnel, C.) 5–37 (EDP Sciences, Les Ulis, 2016).

  5. Walker, D. L. et al. Comparing young massive clusters and their progenitor clouds in the Milky Way. Mon. Not. R. Astron. Soc. 457, 4536–4545 (2016).

    Article  ADS  Google Scholar 

  6. Dale, J. E., Bonnell, I. A., Clark, C. J. & Bate, M. R. Photoionizing feedback in star cluster formation. Mon. Not. R. Astron. Soc. 358, 291–304 (2005).

    Article  ADS  Google Scholar 

  7. Krumholz, M. R. & Matzner, C. D. The dynamics of radiation-pressure-dominated H II regions. Astrophys. J. 703, 1352–1362 (2009).

    Article  ADS  Google Scholar 

  8. Murray, N., Quataert, E. & Thompson, T. A. The disruption of giant molecular clouds by radiation pressure and the efficiency of star formation in galaxies. Astrophys. J. 709, 191–209 (2010).

    Article  ADS  Google Scholar 

  9. Dale, J. E., Ercolano, B. & Bonnell, I. A. Ionizing feedback from massive stars in massive clusters—II. Disruption of bound clusters by photoionization. Mon. Not. R. Astron. Soc. 424, 377–392 (2012).

    Article  ADS  Google Scholar 

  10. Erb, D. K. et al. The mass–metallicity relation at z ~2. Astrophys. J. 644, 813–828 (2006).

    Article  ADS  Google Scholar 

  11. Maiolino, R. et al. AMAZE. I. The evolution of the mass–metallicity relation at z 3. Astron. Astrophys. 488, 463–479 (2008).

    Article  ADS  Google Scholar 

  12. Howard, C. S., Pudritz, R. E. & Harris, W. E. Simulating radiative feedback and star cluster formation in GMCs—II. Mass dependence of cloud destruction and cluster properties. Mon. Not. R. Astron. Soc. 470, 3346–3358 (2017).

    Article  ADS  Google Scholar 

  13. Moore, B., Diemand, J., Madau, P., Zemp, M., & Stadel, J. Globular clusters, satellite galaxies and stellar haloes from early dark matter peaks. Mon. Not. R. Astron. Soc. 368, 563–570 (2006).

    Article  ADS  Google Scholar 

  14. Renzini, A. et al. The Hubble space telescope UV legacy survey of galactic globular clusters—V. Constraints on formation scenarios. Mon. Not. R. Astron. Soc. 454, 4197–4207 (2015).

    Article  ADS  Google Scholar 

  15. D’Ercole, A., D’Antona, F., & Vesperini, E. Accretion of pristine gas and dilution during the formation of multiple-population globular clusters. Mon. Not. R. Astron. Soc. 461, 4088–4098 (2016).

    Article  ADS  Google Scholar 

  16. Fukui, Y. & Kawamura, A. Molecular clouds in nearby galaxies. Annu. Rev. Astron. Astrophys. 48, 547–580 (2010).

    Article  ADS  Google Scholar 

  17. Heyer, M. & Dame, T. M. Molecular clouds in the Milky Way. Annu. Rev. Astron. Astrophys. 53, 593–629 (2015).

    Article  ADS  Google Scholar 

  18. Lada, C. J. & Lada, E. A. Embedded clusters in molecular clouds. Annu. Rev. Astron. Astrophys. 41, 57–115 (2003).

    Article  ADS  Google Scholar 

  19. Fall, M. S. & Chandar, R. Similarities in populations of star clusters. Astrophys. J. 752, 96 (2012).

    Article  ADS  Google Scholar 

  20. Brodie, J. P. & Strader, J. Extragalactic globular clusters and galaxy formation. Annu. Rev. Astron. Astrophys. 44, 193–267 (2006).

    Article  ADS  Google Scholar 

  21. Harris, W. E. Massive star clusters in galaxies. Philos. Trans. R. Soc. A 386, 889–906 (2010).

    Article  ADS  Google Scholar 

  22. Vanzella, E. et al. Paving the way for the JWST: witnessing globular cluster formation at z > 3. Mon. Not. R. Astron. Soc. 467, 4303–4321 (2017).

    Article  ADS  Google Scholar 

  23. Bouwens, R. J. et al. Very low-luminosity galaxies in the early universe have observed sizes similar to single star cluster complexes. Preprint at https://arxiv.org/abs/1711.02090 (2017).

  24. Lada, C. J., Forbrich, L., Lombardi, M. & Alves, J. F. Star formation rates in molecular clouds and the nature of the extragalactic scaling relations. Astrophys. J. 745, 190 (2012).

    Article  ADS  Google Scholar 

  25. Shapiro, K. L., Genzel, R., Förster, S. & Natascha, M. Star-forming galaxies at z ~ 2 and the formation of the metal-rich globular cluster population. Mon. Not. R. Astron. Soc. Lett. 403, L36–L40 (2010).

    Article  ADS  Google Scholar 

  26. Rogers, H. & Pittard, J. M. Feedback from winds and supernovae in massive stellar clusters—I. Hydrodynamics. Mon. Not. R. Astron. Soc. 431, 1337–1351 (2013).

    Article  ADS  Google Scholar 

  27. Sabbi, E. et al. Hubble tarantula treasury project. III. Photometric catalog and resulting constraints on the progression of star formation in the 30 Doradus region. Astrophys. J. Supp. 222, 11 (2016).

    Article  ADS  Google Scholar 

  28. Reina-Campos, M. & Kruijssen, J. M. D. A. A unified model for the maximum mass-scales of molecular clouds, stellar clusters, and high-redshift clumps. Mon. Not. R. Astron. Soc. 469, 1282–1298 (2017).

    Article  ADS  Google Scholar 

  29. Elmegreen, B. G. Globular cluster formation at high density: a model for elemental enrichment with fast recycling of massive-star debris. Astrophys. J. 836, 80 (2017).

    Article  ADS  Google Scholar 

  30. Agertz, O. & Kravstov, A. V. On the interplay between star formation and feedback in galaxy formation simulations. Astrophys. J. 804, 18 (2015).

    Article  ADS  Google Scholar 

  31. Fryxwell, B. et al. FLASH: an adaptive mesh hydrodynamics code for modeling astrophysical thermonuclear flashes. Astrophys. J. Suppl. Ser. 131, 273–334 (2000).

    Article  ADS  Google Scholar 

  32. MacNeice, P., Olson, K. M., Mobarry, C. M., de Fainchtein, R. & Packer, C. PARAMESH: a parallel adaptive mesh refinement community toolkit. Comput. Phys. Commun. 126, 330–354 (2000).

    Article  ADS  MATH  Google Scholar 

  33. Banerjee, R. & Pudritz, R. E. Outflows and jets from collapsing magnetized cloud cores. Astrophys. J. 641, 949–960 (2006).

    Article  ADS  Google Scholar 

  34. Neufeld, D. A.., Lepp, S. & Melnick, G. J. Thermal balance in dense molecular clouds: radiative cooling rates and emission-line luminosities. Astrophys. J. Suppl. Ser. 100, 132 (1995).

    Article  ADS  Google Scholar 

  35. Goldsmith, P. F. Molecular depletion and thermal balance in dark cloud cores. Astrophys. J. 557, 736–746 (2001).

    Article  ADS  Google Scholar 

  36. Federrath, C., Banerjee, R., Clark, P. C. & Klessen, R. S. Modeling collapse and accretion in turbulent gas clouds: implementation and comparison of sink particles in AMR and SPH. Astrophys. J. 713, 269–290 (2010).

    Article  ADS  Google Scholar 

  37. Howard, C. S., Pudritz, R. E., & Harris, W. E. Cluster formation in molecular clouds—I. Stellar populations, star formation rates and ionizing radiation. Mon. Not. R. Astron. Soc. 438, 1305–1317 (2014).

    Article  ADS  Google Scholar 

  38. Krumholz, M. R. & McKee, C. F. A general theory of turbulence-regulated star formation, from spirals to ultraluminous infrared galaxies. Astrophys. J. 630, 250–268 (2005).

    Article  ADS  Google Scholar 

  39. Padoan, P. & Nordlund, Å. The star formation rate of supersonic magnetohydrodynamic turbulence. Astrophys. J. 730, 40 (2011).

    Article  ADS  Google Scholar 

  40. Chabrier, G. in The Initial Mass Function 50 Years Later Vol. 327 (eds Corbelli, E., Palla, F. & Zinnecker, H.) 41–50 (Springer, Dordrecht, 2005).

  41. Tout, C. A., Pols, O. R., Eggleton, P. P. Han, Z. Zero-age main-sequence radii and luminosities as analytic functions of mass and metallicity. Mon. Not. R. Astron. Soc. 281, 257–262 (1996).

    Article  ADS  Google Scholar 

  42. Rijkhorst, E. J., Plewa, T., Dubey, A., Mellema, G. Hybrid characteristics: 3D radiative transfer for parallel adaptive mesh refinement hydrodynamics. Astron. Astrophys. 452, 907–920 (2006).

    Article  ADS  Google Scholar 

  43. Peters, T. et al. H ii regions: witnesses to massive star formation. Astrophys. J. 711, 1017–1028 (2010).

    Article  ADS  Google Scholar 

  44. Frank, A. & Mellema, G. A. A radiation-gasdynamical method for numerical simulations of ionized nebulae: radiation-gasdynamics of PNe I. Astron. Astrophys. 289, 937–945 (1994).

    ADS  Google Scholar 

  45. Pollack, J. B. et al. Composition and radiative properties of grains in molecular clouds and accretion disks. Astrophys. J. 421, 615–639 (1994).

    Article  ADS  Google Scholar 

  46. Li, A. & Draine, B. T. Infrared emission from interstellar dust. II. The diffuse interstellar medium. Astrophys. J. 554, 778–802 (2001).

    Article  ADS  Google Scholar 

  47. Rémy-Ruyer, A. et al. Gas-to-dust mass ratios in local galaxies over a 2 dex metallicity range. Astron. Astrophys. 563, A31 (2014).

    Article  Google Scholar 

  48. Girichidis, P., Federrath, C., Banerjee, R., Klessen, R. S. Importance of the initial conditions for star formation—I. Cloud evolution and morphology. Mon. Not. R. Astron. Soc. 413, 2741–2759 (2011).

    Article  ADS  Google Scholar 

  49. Howard, C. S., Pudritz, R. E. & Harris, W. E. Simulating radiative feedback and star cluster formation in GMCs—I. Dependence on gravitational boundedness. Mon. Not. R. Astron. Soc. 461, 2953–2974 (2016).

    Article  ADS  Google Scholar 

  50. Georgy, C. et al. Grids of stellar models with rotation III. Models from 0.8 to 120 M at a metallicity Z = 0.002. Astron. Astrophys. 558, A103 (2013).

    Article  Google Scholar 

  51. Rathborne, J. M. et al. Turbulence sets the initial conditions for star formation in high-pressure environments. Astrophys. J. 795, L24 (2014).

    Article  ADS  Google Scholar 

  52. Bigiel, F. et al. The EMPIRE survey: systematic variations in the dense gas fraction and star formation efficiency from full-disk mapping of M51. Astrophys. J. 822, L26 (2016).

    Article  ADS  Google Scholar 

  53. Turk, M. J. et al. YT: a multi-code analysis toolkit for astrophysical simulation data. Astrophys. J. Suppl. Ser. 192, 9 (2011).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the Natural Sciences and Engineering Research Council through a postgraduate scholarship and Discovery Grants. Computations were performed on the GPC supercomputer at the SciNet HPC Consortium. SciNet is funded by the Canada Foundation for Innovation under the auspices of Compute Canada; Government of Ontario; the Ontario Research Fund: Research Excellence; and the University of Toronto.

Author information

Authors and Affiliations

Authors

Contributions

C.S.H. carried out the simulations and completed the data analysis and figure production. All authors contributed to the interpretation of the results and were involved in writing the final manuscript.

Corresponding author

Correspondence to Corey S. Howard.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–5, Supplementary Video captions 1–6, Supplementary discussion

Supplementary Video 1

Full cloud visualization of the column density and cluster movement for the solar metallicity (Zʘ) simulation

Supplementary Video 2

Zoomin of the central 35 pc region showing only the clusters that merge to the young massive cluster (1 Zʘ simulation)

Supplementary Video 3

Full cloud visualization of the column density and cluster movement for the 0.1 Zʘ simulation

Supplementary Video 4

Zoom-in of the central 35 pc region showing only the clusters that merge to the young massive cluster (0.1 Zʘ simulation)

Supplementary Video 5

The density and gas flow rate of a 5 pc spherical region centered on the 1 Zʘ young massive cluster

Supplementary Video 6

The density and gas flow rate of a 5 pc spherical region centered on the 0.1 Zʘ young massive cluster

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Howard, C.S., Pudritz, R.E. & Harris, W.E. A universal route for the formation of massive star clusters in giant molecular clouds. Nat Astron 2, 725–730 (2018). https://doi.org/10.1038/s41550-018-0506-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-018-0506-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing