Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Non-thermal X-rays from colliding wind shock acceleration in the massive binary Eta Carinae


Cosmic-ray acceleration has been a long-standing mystery1,2 and, despite more than a century of study, we still do not have a complete census of acceleration mechanisms. The collision of strong stellar winds in massive binary systems creates powerful shocks that have been expected to produce high-energy cosmic rays through Fermi acceleration at the shock interface. The accelerated particles should collide with stellar photons or ambient material, producing non-thermal emission observable in X-rays and γ-rays3,4. The supermassive binary star Eta Carinae (η Car) drives the strongest colliding wind shock in the solar neighbourhood5,6. Observations with non-focusing high-energy observatories indicate a high-energy source near η Car, but have been unable to conclusively identify η Car as the source because of their relatively poor angular resolution7,8,9. Here we present direct focussing observations of the non-thermal source in the extremely hard X-ray band, which is found to be spatially coincident with the star within several arc-seconds. These observations show that the source of non-thermal X-rays varies with the orbital phase of the binary, and that the photon index of the emission is similar to that derived through analysis of the γ-ray spectrum. This is conclusive evidence that the high-energy emission indeed originates from non-thermal particles accelerated at colliding wind shocks.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Fig. 1: NuSTAR image contours of the η Car field.
Fig. 2
Fig. 3


  1. Koyama, K. et al. Evidence for shock acceleration of high-energy electrons in the supernova remnant SN1006. Nature 378, 255–258 (1995).

    Article  ADS  Google Scholar 

  2. Morlino, G. & Caprioli, D. Strong evidence for hadron acceleration in Tycho’s supernova remnant. Astron. Astrophys. 538, A81 (2012).

    Article  ADS  Google Scholar 

  3. Pittard, J. M. & Dougherty, S. M. Radio, X-ray, and γ-ray emission models of the colliding-wind binary WR140. Mon. Not. R. Astron. Soc. 372, 801–826 (2006).

    Article  ADS  Google Scholar 

  4. De Becker, M., Benaglia, P., Romero, G. E. & Peri, C. S. An investigation into the fraction of particle accelerators among colliding-wind binaries. Towards an extension of the catalogue. Astron. Astrophys. 600, A47 (2017).

    Article  Google Scholar 

  5. Corcoran, M. F. X-ray monitoring of η Carinae: variations on a theme. Astron. J. 129, 2018–2025 (2005).

    Article  ADS  Google Scholar 

  6. Groh, J. H., Hillier, D. J., Madura, T. I. & Weigelt, G. On the influence of the companion star in Eta Carinae: 2D radiative transfer modelling of the ultraviolet and optical spectra. Mon. Not. R. Astron. Soc. 423, 1623–1640 (2012).

    Article  ADS  Google Scholar 

  7. Leyder, J.-C., Walter, R. & Rauw, G. Hard X-ray emission from η Carinae. Astron. Astrophys. 477, L29–L32 (2008).

    Article  ADS  Google Scholar 

  8. Abdo, A. A. et al. Fermi large area telescope observation of a gamma-ray source at the position of Eta Carinae. Astrophys. J. 723, 649–657 (2010).

    Article  ADS  Google Scholar 

  9. Sekiguchi, A. et al. Super-hard X-ray emission from η Carinae observed with Suzaku. Publ. Astron. Soc. Jpn 61, 629–637 (2009).

    Article  ADS  Google Scholar 

  10. Castor, J. I., Abbott, D. C. & Klein, R. I. Radiation-driven winds in Of stars. Astrophys. J. 195, 157–174 (1975).

    Article  ADS  Google Scholar 

  11. Dougherty, S. M. & Williams, P. M. Non-thermal emission in Wolf-Rayet stars: are massive companions required? Mon. Not. R. Astron. Soc. 319, 1005–1010 (2000).

    Article  ADS  Google Scholar 

  12. De Becker, M. & Raucq, F. Catalogue of particle-accelerating colliding-wind binaries. Astron. Astrophys. 558, A28 (2013).

    Article  Google Scholar 

  13. Williams, P. M. et al. Radio and infrared structure of the colliding-wind Wolf-Rayet system WR147. Mon. Not. R. Astron. Soc. 289, 10–20 (1997).

    Article  ADS  Google Scholar 

  14. Dougherty, S. M., Beasley, A. J., Claussen, M. J., Zauderer, B. A. & Bolingbroke, N. J. High-resolution radio observations of the colliding-wind binary WR 140. Astrophys. J. 623, 447–459 (2005).

    Article  ADS  Google Scholar 

  15. Corcoran, M. F. et al. The 2014 X-ray minimum of η Carinae as seen by Swift. Astrophys. J. 838, 45 (2017).

    Article  ADS  Google Scholar 

  16. Hillier, D. J., Davidson, K., Ishibashi, K. & Gull, T. On the nature of the central source in η Carinae. Astrophys. J. 553, 837–860 (2001).

    Article  ADS  Google Scholar 

  17. Pittard, J. M. & Corcoran, M. F. In hot pursuit of the hidden companion of Eta Carinae: an X-ray determination of the wind parameters. Astron. Astrophys. 383, 636–647 (2002).

    Article  ADS  Google Scholar 

  18. Damineli, A. et al. The periodicity of the η Carinae events. Mon. Not. R. Astron. Soc. 384, 1649–1656 (2008).

    Article  ADS  Google Scholar 

  19. Hamaguchi, K. et al. Suzaku monitoring of hard X-ray emission from η Carinae over a single binary orbital cycle. Astrophys. J. 795, 119 (2014).

    Article  ADS  Google Scholar 

  20. Leyder, J.-C. Walter, R. & Rauw, G. Hard X-ray identification of η Carinae and steadiness close to periastron. Astron. Astrophys. 524, A59 (2010).

    Article  Google Scholar 

  21. Hamaguchi, K. et al. Eta Carinae’s thermal X-ray tail measured with XMM-Newton and NuSTAR. Astrophys. J. 817, 23 (2016).

    Article  ADS  Google Scholar 

  22. Tavani, M. et al. Detection of gamma-ray emission from the Eta-Carinae region. Astrophys. J. Lett. 698, L142–L146 (2009).

    Article  ADS  Google Scholar 

  23. Leser, E. First results of Eta Car observations with H.E.S.S.II. Preprint at (2017).

  24. Reitberger, K., Reimer, A., Reimer, O. & Takahashi, H. The first full orbit of η Carinae seen by Fermi. Astron. Astrophys. 577, A100 (2015).

    Article  ADS  Google Scholar 

  25. Harrison, F. A. et al. The nuclear spectroscopic telescope array (NuSTAR) high-energy X-ray mission. Astrophys. J. 770, 103 (2013).

    Article  ADS  Google Scholar 

  26. Jansen, F. et al. XMM-Newton observatory. I. The spacecraft and operations. Astron. Astrophys. 365, L1–L6 (2001).

    Article  ADS  Google Scholar 

  27. Hamaguchi, K. et al. X-ray emission from Eta Carinae near Periastron in 2009. I. A two-state solution. Astrophys. J. 784, 125 (2014).

    Article  ADS  Google Scholar 

  28. Pittard, J. M., Dougherty, S. M., Coker, R. F., O’Connor, E. & Bolingbroke, N. J. Radio emission models of colliding-wind binary systems. Inclusion of IC cooling. Astron. Astrophys. 446, 1001–1019 (2006).

    Article  ADS  Google Scholar 

  29. Farnier, C., Walter, R. & Leyder, J.-C. η Carinae: a very large hadron collider. Astron. Astrophys. 526, A57 (2011).

    Article  ADS  Google Scholar 

  30. Ohm, S., Zabalza, V., Hinton, J. A. & Parkin, E. R. On the origin of γ-ray emission in η Carina. Mon. Not. R. Astron. Soc. 449, L132–L136 (2015).

    Article  ADS  Google Scholar 

  31. Madsen, K. K. et al. Calibration of the NuSTAR high-energy focusing X-ray telescope. Astrophys. J. Suppl. 220, 8 (2015).

    Article  ADS  Google Scholar 

  32. Wik, D. R. et al. NuSTAR observations of the bullet cluster: constraints on inverse Compton emission. Astrophys. J. 792, 48 (2014).

    Article  ADS  Google Scholar 

  33. Miyaji, T. et al. The cosmic X-ray background spectrum observed with ROSAT and ASCA. Astron. Astrophys. 334, L13–L16 (1998).

    ADS  Google Scholar 

  34. Valinia, A. & Marshall, F. E. RXTE measurement of the diffuse X-ray emission from the galactic ridge: implications for the energetics of the interstellar medium. Astrophys. J. 505, 134–147 (1998).

    Article  ADS  Google Scholar 

  35. Ebisawa, K. et al. Chandra deep X-ray observation of a typical galactic plane region and near-infrared identification. Astrophys. J. 635, 214–242 (2005).

    Article  ADS  Google Scholar 

  36. Hamaguchi, K., Drake, S. A., Corcoran, M. F., Richardson, N. & Teodoro, M. A gigantic X-ray flare from the star Trumpler 14 Y442 in the Carina star forming complex (The Astronomer’s Telegram 7983, 2015).

  37. Hamaguchi, K. et al. X-ray spectral variation of η Carinae through the 2003 X-ray minimum. Astrophys. J. 663, 522–542 (2007).

    Article  ADS  Google Scholar 

  38. Madura, T. I. et al. Constraints on decreases in η Carinae’s mass-loss from 3D hydrodynamic simulations of its binary colliding winds. Mon. Not. R. Astron. Soc. 436, 3820–3855 (2013).

    Article  ADS  Google Scholar 

  39. Russell, C. M. P. et al. Modelling the central constant emission X-ray component of η Carinae. Mon. Not. R. Astron. Soc. 458, 2275–2287 (2016).

    Article  ADS  Google Scholar 

  40. Corcoran, M. F. et al. Waiting in the wings: reflected X-ray emission from the Homunculus nebula. Astrophys. J. 613, 381–386 (2004).

    Article  ADS  Google Scholar 

  41. Aschenbach, B. et al. in SPIE Vol. 4012: X-Ray Optics, Instruments, and Missions III (eds Trümper, J. E. & Aschenbach, B.) 731–739 (2000).

  42. Strüder, L. et al. The European photon imaging camera on XMM-Newton: the pn-CCD camera. Astron. Astrophys. 365, L18–L26 (2001).

    Article  ADS  Google Scholar 

  43. Turner, M. J. L. et al. The European photon imaging camera on XMM-Newton: the MOS cameras. Astron. Astrophys. 365, L27–L35 (2001).

    Article  ADS  Google Scholar 

  44. Stevens, I. R., Blondin, J. M. & Pollock, A. M. T. Colliding winds from early-type stars in binary systems. Astrophys. J. 386, 265–287 (1992).

    Article  ADS  Google Scholar 

  45. Eichler, D. & Usov, V. Particle acceleration and nonthermal radio emission in binaries of early-type stars. Astrophys. J. 402, 271–279 (1993).

    Article  ADS  Google Scholar 

Download references


This research has made use of data obtained from the High Energy Astrophysics Science Archive Research Center (HEASARC), provided by NASA’s Goddard Space Flight Center. This research has made use of NASA’s Astrophysics Data System Bibliographic Services. Resources supporting this work were provided by the NASA High-End Computing (HEC) Program through the NASA Advanced Supercomputing (NAS) Division at Ames Research Center. We appreciate M. Yukita, K. Madsen and M. Stuhlinger on helping resolve the NuSTAR and XMM-Newton data analysis. K.H. is supported by the Chandra grant GO4–15019A, GO7–18012A, the XMM-Newton grant NNX15AK62G, NNX16AN87G, NNX17AE67G, NNX17AE68G, and the ADAP grant NNX15AM96G. C.M.P.R. acknowledges initial support from Chandra Theory grant TM7-18003Z used in combination with an appointment to the NASA Postdoctoral Program at the Goddard Space Flight Center, administered by Universities Space Research Association under contract with NASA, and current support from FONDECYT grant 3170870. A.F.J.M. is supported by NSERC (Canada) and FQRNT (Quebec).

Author information

Authors and Affiliations



K.H. and M.F.C. led the project, from proposing and planning observations, analysing the data to composing the manuscript. J.M.P. constructed a theoretical model that explains the variation of the non-thermal component. N.S. performed initial analysis of the NuSTAR data in 2015. H.T analysed and discussed Fermi data of η Car. C.M.P.R. performed theoretical simulations of η Car’s thermal X-ray emission. B.W.G. and D.R.W. discussed NuSTAR data analysis, especially the background characteristics. T.R.G. worked for the observation planning. T.R.G., N.D.R., T.I.M. and A.F.J.M. discussed the wind property of η Car. All authors reviewed the manuscript and discussed the work.

Corresponding author

Correspondence to Kenji Hamaguchi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–3, Supplementary Tables 1–2

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamaguchi, K., Corcoran, M.F., Pittard, J.M. et al. Non-thermal X-rays from colliding wind shock acceleration in the massive binary Eta Carinae. Nat Astron 2, 731–736 (2018).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing