Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

An extended hydrogen envelope of the extremely hot giant exoplanet KELT-9b

Abstract

Giant exoplanets orbiting close to their host stars have high temperatures because of the immense amount of stellar irradiation that they receive. The extreme energy input leads to the expansion of the atmosphere and the escape of neutral hydrogen1,2,3. An intriguing case among the hot giant planets is KELT-9b, an exoplanet orbiting very close to an early A-type star, with the highest temperature (around 4,600 K on the day-side) of any exoplanet known so far4. The atmospheric composition and dynamics of this planet have previously been unknown. Here we report the detection of an extended hot hydrogen atmosphere around KELT-9b. The detection was achieved by measuring the atomic hydrogen absorption during transit by observing the Balmer Hα line, which is unusually strong, mainly owing to the high level of extreme-ultraviolet radiation from the star. We detected a wavelength shift of the Hα absorption that is mostly attributed to the planetary orbital motion5. The obtained transmission spectrum has a noticeable line contrast (1.15% extra absorption at the Hα line centre). The observation implies that the effective radius at the Hα line centre is about 1.64 times the size of the planetary radius, indicating that the planet has an extended hydrogen envelope close to the size of the Roche lobe (\(1.9{1}_{-0.26}^{+0.22}{R}_{{\rm{planet}}}\)) and is probably undergoing substantial escape of its atmosphere.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The Hα absorption spectra of KELT-9b at different orbital phases.
Fig. 2: The combined Hα absorption spectrum.
Fig. 3: The time-series equivalent width of the Hα absorption.

Similar content being viewed by others

References

  1. Vidal-Madjar, A. et al. An extended upper atmosphere around the extrasolar planet HD209458b. Nature 422, 143–146 (2003).

    Article  ADS  Google Scholar 

  2. Ballester, G. E., Sing, D. K. & Herbert, F. The signature of hot hydrogen in the atmosphere of the extrasolar planet HD 209458b. Nature 445, 511–514 (2007).

    Article  ADS  Google Scholar 

  3. Ehrenreich, D. et al. A giant comet-like cloud of hydrogen escaping the warm Neptune-mass exoplanet GJ 436b. Nature 522, 459–461 (2015).

    Article  ADS  Google Scholar 

  4. Gaudi, B. S. et al. A giant planet undergoing extreme-ultraviolet irradiation by its hot massive-star host. Nature 546, 514–518 (2017).

    ADS  Google Scholar 

  5. Snellen, I. A. G., de Kok, R. J., de Mooij, E. J. W. & Albrecht, S. The orbital motion, absolute mass and high-altitude winds of exoplanet HD209458b. Nature 465, 1049–1051 (2010).

    Article  ADS  Google Scholar 

  6. Quirrenbach, A. et al. CARMENES: an overview six months after first light. In Proc. SPIE 9908: G round-based and Airborne Instrumentation for Astronomy VI 990812 (SPIE, 2016).

  7. Brogi, M. et al. Rotation and winds of exoplanet HD 189733 b measured with high-dispersion transmission spectroscopy. Astrophys. J. 817, 106 (2016).

    Article  ADS  Google Scholar 

  8. Wyttenbach, A., Ehrenreich, D., Lovis, C., Udry, S. & Pepe, F. Spectrally resolved detection of sodium in the atmosphere of HD 189733b with the HARPS spectrograph. Astron. Astrophys. 577, A62 (2015).

    Article  ADS  Google Scholar 

  9. Louden, T. & Wheatley, P. J. Spatially resolved eastward winds and rotation of HD 189733b. Astrophys. J. Lett. 814, L24 (2015).

    Article  ADS  Google Scholar 

  10. Rossiter, R. A. On the detection of an effect of rotation during eclipse in the velocity of the brighter component of beta Lyrae, and on the constancy of velocity of this system. Astrophys. J. 60, 15–21 (1924).

    Article  ADS  Google Scholar 

  11. McLaughlin, D. B. Some results of a spectrographic study of the Algol system. Astrophys. J. 60, 22–31 (1924).

    Article  ADS  Google Scholar 

  12. Queloz, D. et al. Detection of a spectroscopic transit by the planet orbiting the star HD209458. Astron. Astrophys. 359, L13–L17 (2000).

    ADS  Google Scholar 

  13. Yan, F., Fosbury, R. A. E., Petr-Gotzens, M. G., Zhao, G. & Pallé, E. The centre-to-limb variations of solar Fraunhofer lines imprinted upon lunar eclipse spectra. Implications for exoplanet transit observations. Astron. Astrophys. 574, A94 (2015).

    Article  ADS  Google Scholar 

  14. Czesla, S., Klocová, T., Khalafinejad, S., Wolter, U. & Schmitt, J. H. M. M. The center-to-limb variation across the Fraunhofer lines of HD 189733. Sampling the stellar spectrum using a transiting planet. Astron. Astrophys. 582, A51 (2015).

    Article  ADS  Google Scholar 

  15. Yan, F., Pallé, E., Fosbury, R. A. E., Petr-Gotzens, M. G. & Henning, T. Effect of the stellar absorption line centre-to-limb variation on exoplanet transmission spectrum observations. Astron. Astrophys. 603, A73 (2017).

    Article  ADS  Google Scholar 

  16. Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. Publ. Astron. Soc. Pacif. 125, 306 (2013).

    Article  ADS  Google Scholar 

  17. Lecavelier des Etangs, A. et al. Temporal variations in the evaporating atmosphere of the exoplanet HD 189733b. Astron. Astrophys 543, L4 (2012).

    Article  ADS  Google Scholar 

  18. Lavie, B. et al. The long egress of GJ 436b’s giant exosphere. Astron. Astrophys. 605, L7 (2017).

    Article  ADS  Google Scholar 

  19. Jensen, A. G. et al. A detection of Hα in an exoplanetary exosphere. Astrophys. J. 751, 86 (2012).

    Article  ADS  Google Scholar 

  20. Cauley, P. W. et al. Optical hydrogen absorption consistent with a thin bow shock leading the hot Jupiter HD 189733b. Astrophys. J. 810, 13 (2015).

    Article  ADS  Google Scholar 

  21. Cauley, P. W., Redfield, S., Jensen, A. G. & Barman, T. Variation in the pre-transit Balmer line signal around the hot Jupiter HD 189733b. Astron. J. 152, 20 (2016).

    Article  ADS  Google Scholar 

  22. Barnes, J. R., Haswell, C. A., Staab, D. & Anglada-Escudé, G. The origin of the excess transit absorption in the HD 189733 system: planet or star? Mon. Not. R. Astron. Soc. 462, 1012–1028 (2016).

    Article  ADS  Google Scholar 

  23. Cauley, P. W., Redfield, S. & Jensen, A. G. A decade of Hα transits for HD 189733 b: stellar activity versus absorption in the extended atmosphere. Astron. J. 153, 217 (2017).

    Article  ADS  Google Scholar 

  24. Christie, D., Arras, P. & Li, Z.-Y. Hα absorption in transiting exoplanet atmospheres. Astrophys. J. 772, 144 (2013).

    Article  ADS  Google Scholar 

  25. Huang, C., Arras, P., Christie, D. & Li, Z.-Y. A model of the Hα and Na transmission spectrum of HD 189733b. Astrophys. J. 851, 150 (2017).

    Article  ADS  Google Scholar 

  26. Shkolnik, E., Bohlender, D. A., Walker, G. A. H. & Collier Cameron, A. The on/off nature of star–planet interactions. Astrophys. J. 676, 628–638 (2008).

    Article  ADS  Google Scholar 

  27. Tian, F., Toon, O. B., Pavlov, A. A. & De Sterck, H. Transonic hydrodynamic escape of hydrogen from extrasolar planetary atmospheres. Astrophys. J. 621, 1049–1060 (2005).

    Article  ADS  Google Scholar 

  28. Lecavelier des Etangs, A. A diagram to determine the evaporation status of extrasolar planets. Astron. Astrophys. 461, 1185–1193 (2007).

    Article  ADS  Google Scholar 

  29. Ehrenreich, D. et al. in Physics and Astrophysics of Planetary Systems (eds Montmerle, T. et al.) 429–440 (Publications Series 41, EAS, Les Ulis, 2010).

  30. Salz, M., Czesla, S., Schneider, P. C. & Schmitt, J. H. M. M. Simulating the escaping atmospheres of hot gas planets in the solar neighborhood. Astron. Astrophys. 586, A75 (2016).

    Article  ADS  Google Scholar 

  31. Caballero, J. A. et al. CARMENES: data flow. In Proc. SPIE 9910: Observatory Operations: Strategies, Processes, and Systems VI 99100E (SPIE, 2016).

  32. Rothman, L. S. et al. The HITRAN 2008 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 110, 533–572 (2009).

    Article  ADS  Google Scholar 

  33. Yan, F. et al. High-resolution transmission spectrum of the Earth’s atmosphere—seeing Earth as an exoplanet using a lunar eclipse. Int. J. Astrobiol. 14, 255–266 (2015).

    Article  Google Scholar 

  34. Casasayas-Barris, N. et al. Detection of sodium in the atmosphere of WASP-69b. Astron. Astrophys. 608, A135 (2017).

    Article  Google Scholar 

  35. Piskunov, N. & Valenti, J. A. Spectroscopy Made Easy: evolution. Astron. Astrophys. 597, A16 (2017).

    Article  ADS  Google Scholar 

  36. Ryabchikova, T. et al. A major upgrade of the VALD database. Phys. Scripta 90, 054005 (2015).

    Article  ADS  Google Scholar 

  37. Kurucz, R. ATLAS12, SYNTHE, ATLAS9, WIDTH9, et cetera. Mem. Soc. Astron. It. Suppl. 8, 14–24 (2005).

    Google Scholar 

Download references

Acknowledgements

This work is based on observations collected at the German–Spanish Astronomical Center, Calar Alto, jointly operated by the Max-Planck-Institut für Astronomie Heidelberg and the Instituto de Astrofísica de Andalucía (CSIC). We thank Calar Alto Observatory for allocation of director’s discretionary time to this programme. We thank L. Nortmann for help in observing preparations and M. Samland for discussions on Monte Carlo analysis. We thank K. Molaverdikhani and C. Huang for discussions on the atmosphere model.

Author information

Authors and Affiliations

Authors

Contributions

F.Y. planned the observations, performed the data analysis and wrote the manuscript. T.H. contributed to preparations for observations and to writing the manuscript.

Corresponding author

Correspondence to Fei Yan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–4

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, F., Henning, T. An extended hydrogen envelope of the extremely hot giant exoplanet KELT-9b. Nat Astron 2, 714–718 (2018). https://doi.org/10.1038/s41550-018-0503-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-018-0503-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing