Evidence for the start of planet formation in a young circumstellar disk


The growth of dust grains in protoplanetary disks is a necessary first step towards planet formation1. This growth has been inferred from observations of thermal dust emission2 towards mature protoplanetary systems (age >2 million years) with masses that are, on average, similar to Neptune3. In contrast, the majority of confirmed exoplanets are heavier than Neptune4. Given that young protoplanetary disks are more massive than their mature counterparts, this suggests that planet formation starts early, but evidence for grain growth that is spatially and temporally coincident with a massive reservoir in young disks remains scarce. Here, we report observations on a lack of emission of carbon monoxide isotopologues within the inner ~15 au of a very young (age ~100,000 years) disk around the solar-type protostar TMC1A. By using the absence of spatially resolved molecular line emission to infer the gas and dust content of the disk, we conclude that shielding by millimetre-size grains is responsible for the lack of emission. This suggests that grain growth and millimetre-size dust grains can be spatially and temporally coincident with a mass reservoir sufficient for giant planet formation. Hence, planet formation starts during the earliest, embedded phases in the life of young stars.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Dust continuum and integrated 13CO and C18O emission map of TMC1A.
Fig. 2: Channel maps for 13CO and C18O.
Fig. 3: Observed and simulated C18O emission maps.


  1. 1.

    Testi, L. et al. in Protostars and Planets VI (eds Beuther, H., Dullemond, C. & Henning, T.) 339–362 (Univ. Arizona Press, Tucson, 2014).

  2. 2.

    Beckwith, S. V. W., Sargent, A. I., Chini, R. S. & Guesten, R. A survey for circumstellar disks around young stellar objects. Astrophys. J. 99, 924–945 (1990).

    ADS  Google Scholar 

  3. 3.

    Pascucci, I. et al. A steeper than linear disk mass–stellar mass scaling relation. Astrophys. J. 831, 125 (2016).

    ADS  Article  Google Scholar 

  4. 4.

    The Extrasolar Planets Encyclopaedia (Paris Observatory, Paris, accessed 20 December 2017); http://www.exoplanet.eu

  5. 5.

    Harsono, D. et al. Rotationally-supported disks around Class I sources in Taurus: disk formation constraints. Astron. Astrophys. 562, A77 (2014).

    Article  Google Scholar 

  6. 6.

    Aso, Y. et al. ALMA observations of the transition from infall motion to Keplerian rotation around the late-phase protostar TMC-1A. Astrophys. J. 812, 27 (2015).

    ADS  Article  Google Scholar 

  7. 7.

    Lada, C. J. Star formation—from OB associations to protostars. IAU Symp. 115, 1–18 (1987).

    ADS  Google Scholar 

  8. 8.

    Hogerheijde, M. R., van Dishoeck, E. F., Blake, G. A. & van Langevelde, H. J. Envelope structure on 700 au scales and the molecular outflows of low-mass young stellar objects. Astrophys. J. 502, 315–336 (1998).

    ADS  Article  Google Scholar 

  9. 9.

    Bjerkeli, P., van der Wiel, M. H. D., Harsono, D., Ramsey, J. P. & Jørgensen, J. K. Resolved images of a protostellar outflow driven by an extended disk wind. Nature 540, 406–409 (2016).

    ADS  Article  Google Scholar 

  10. 10.

    Chandler, C. J., Terebey, S., Barsony, M. & Moore, T. J. T. The small-scale outflow structure of embedded sources in Taurus. Astrophys. Space Sci. 224, 109–112 (1995).

    ADS  Article  Google Scholar 

  11. 11.

    ALMA Partnership. et al. The 2014 ALMA Long Baseline Campaign: first results from high angular resolution observations toward the HL Tau region. Astrophys. J. Lett. 808, L3 (2015).

    ADS  Article  Google Scholar 

  12. 12.

    Zhang, K., Blake, G. A. & Bergin, E. A. Evidence of fast pebble growth near condensation fronts in the HL Tau protoplanetary disk. Astrophys. J. Lett. 806, L7 (2015).

    ADS  Article  Google Scholar 

  13. 13.

    Andrews, S. M. et al. Ringed substructure and a gap at 1 au in the nearest protoplanetary disk. Astrophys. J. Lett. 820, L40 (2016).

    ADS  Article  Google Scholar 

  14. 14.

    Pérez, L. M. et al. Spiral density waves in a young protoplanetary disk. Science 353, 1519–1521 (2016).

    ADS  MathSciNet  Article  MATH  Google Scholar 

  15. 15.

    Herczeg, G. J., Brown, J. M., van Dishoeck, E. F. & Pontoppidan, K. M. Disks and outflows in CO rovibrational emission from embedded, low-mass young stellar objects. Astron. Astrophys. 533, A112 (2011).

    Article  Google Scholar 

  16. 16.

    Bruderer, S., van Dishoeck, E. F., Doty, S. D. & Herczeg, G. J. The warm gas atmosphere of the HD 100546 disk seen by Herschel. Evidence of a gas-rich, carbon-poor atmosphere? Astron. Astrophys. 541, A91 (2012).

    Article  Google Scholar 

  17. 17.

    Robitaille, T. P. HYPERION: an open-source parallelized three-dimensional dust continuum radiative transfer code. Astron. Astrophys. 536, A79 (2011).

    ADS  Article  Google Scholar 

  18. 18.

    Lodato, G. & Rice, W. K. M. Testing the locality of transport in self-gravitating accretion discs. Mon. Not. R. Astron. Soc. 351, 630–642 (2004).

    ADS  Article  Google Scholar 

  19. 19.

    Ossenkopf, V. & Henning, T. Dust opacities for protostellar cores. Astron. Astrophys. 291, 943–959 (1994).

    ADS  Google Scholar 

  20. 20.

    Henning, T., Michel, B. & Stognienko, R. Dust opacities in dense regions. Planet. Space. Sci. 43, 1333–1343 (1995).

    ADS  Article  Google Scholar 

  21. 21.

    Launhardt, R. et al. The Earliest Phases of Star Formation (EPoS): a Herschel key project. The thermal structure of low-mass molecular cloud cores. Astron. Astrophys. 551, A98 (2013).

    Article  Google Scholar 

  22. 22.

    Ricci, L. et al. Dust properties of protoplanetary disks in the Taurus–Auriga star forming region from millimeter wavelengths. Astron. Astrophys. 512, A15 (2010).

    Article  Google Scholar 

  23. 23.

    Andrews, S. M. in New Trends in Radio Astronomy in the ALMA Era: The 30th Anniversary of Nobeyama Radio Observatory (eds Kawabe, R., Kuno, N. & Yamamoto, S.) 149–156 (Coference Series no. 476, Astronomical Society of the Pacific, 2013).

  24. 24.

    Andrews, S. M., Wilner, D. J., Hughes, A. M., Qi, C. & Dullemond, C. P. Protoplanetary disk structures in Ophiuchus. Astrophys. J. 700, 1502–1523 (2009).

    ADS  Article  Google Scholar 

  25. 25.

    Visser, R., van Dishoeck, E. F., Doty, S. D. & Dullemond, C. P. The chemical history of molecules in circumstellar disks. I. Ices. Astron. Astrophys. 495, 881–897 (2009).

    ADS  Article  Google Scholar 

  26. 26.

    Mizuno, H. Formation of the giant planets. Progress. Theor. Phys. 64, 544–557 (1980).

    ADS  Article  Google Scholar 

  27. 27.

    Lambrechts, M. & Johansen, A. Forming the cores of giant planets from the radial pebble flux in protoplanetary discs. Astron. Astrophys. 572, A107 (2014).

    ADS  Article  Google Scholar 

  28. 28.

    Lambrechts, M. & Johansen, A. Rapid growth of gas-giant cores by pebble accretion. Astron. Astrophys. 544, A32 (2012).

    ADS  Article  Google Scholar 

  29. 29.

    Ida, S., Guillot, T. & Morbidelli, A. The radial dependence of pebble accretion rates: a source of diversity in planetary systems. I. Analytical formulation. Astron. Astrophys. 591, A72 (2016).

    ADS  Article  Google Scholar 

  30. 30.

    Davis, A. M. et al. in Protostars and Planets VI (eds Beuther, H., Dullemond, C. & Henning, T.) 809–831 (Univ. Arizona Press, Tucson, 2014).

  31. 31.

    Connelly, J. N. et al. The absolute chronology and thermal processing of solids in the solar protoplanetary disk. Science 338, 651–655 (2012).

    ADS  Article  Google Scholar 

  32. 32.

    Carilli, C. L. & Holdaway, M. A. Tropospheric phase calibration in millimeter interferometry. Radio Sci. 34, 817–840 (1999).

    ADS  Article  Google Scholar 

  33. 33.

    Maud, L. T. et al. Phase correction for ALMA. Investigating water vapour radiometer scaling: the long-baseline science verification data case study. Astron. Astrophys. 605, A121 (2017).

    Article  Google Scholar 

  34. 34.

    Consortium, A. M. I. et al. Radio continuum observations of Class I protostellar discs in Taurus: constraining the greybody tail at centimetre wavelengths. Mon. Not. R. Astron. Soc. 420, 3334–3343 (2012).

    ADS  Article  Google Scholar 

  35. 35.

    Ubach, C. et al. Radio monitoring of protoplanetary discs. Mon. Not. R. Astron. Soc. 466, 4083–4093 (2017).

    ADS  Google Scholar 

  36. 36.

    Briggs, D. S. High fidelity interferometric imaging: robust weighting and NNLS deconvolution. Bull. Am. Astron. Soc. 27, 1444 (1995).

    Google Scholar 

  37. 37.

    Draine, B. T. et al. Dust masses, PAH abundances, and starlight intensities in the SINGS galaxy sample. Astrophys. J. 663, 866–894 (2007).

    ADS  Article  Google Scholar 

  38. 38.

    Hueso, R. & Guillot, T. Evolution of protoplanetary disks: constraints from DM Tauri and GM Aurigae. Astron. Astrophys. 442, 703–725 (2005).

    ADS  Article  Google Scholar 

  39. 39.

    Robitaille, T. P., Whitney, B. A., Indebetouw, R., Wood, K. & Denzmore, P. Interpreting spectral energy distributions from young stellar objects. I. A grid of 200,000 YSO Model SEDs. Astrophys. J. Suppl. Ser. 167, 256–285 (2006).

    ADS  Article  Google Scholar 

  40. 40.

    Takakuwa, S. et al. A Keplerian circumbinary disk around the protostellar system L1551 NE. Astrophys. J. 754, 52 (2012).

    ADS  Article  Google Scholar 

  41. 41.

    Andrews, S. M. et al. Resolved images of large cavities in protoplanetary transition disks. Astrophys. J. 732, 42 (2011).

    ADS  Article  Google Scholar 

  42. 42.

    Lee, C.-F. et al. SiO shocks of the protostellar jet HH 212: a search for jet rotation. Astrophys. J. 685, 1026–1032 (2008).

    ADS  Article  Google Scholar 

  43. 43.

    Jørgensen, J. K. et al. PROSAC: a submillimeter array survey of low-mass protostars. II. The mass evolution of envelopes, disks, and stars from the Class 0 through I stages. Astron. Astrophys. 507, 861–879 (2009).

    ADS  Article  Google Scholar 

  44. 44.

    Kwon, W., Looney, L. W., Mundy, L. G., Chiang, H.-F. & Kemball, A. J. Grain growth and density distribution of the youngest protostellar systems. Astrophys. J. 696, 841–852 (2009).

    ADS  Article  Google Scholar 

  45. 45.

    Chiang, H.-F., Looney, L. W. & Tobin, J. J. The envelope and embedded disk around the Class 0 protostar L1157-mm: dual-wavelength interferometric observations and modeling. Astrophys. J. 756, 168 (2012).

    ADS  Article  Google Scholar 

  46. 46.

    Tobin, J. J. et al. Modeling the resolved disk around the Class 0 Protostar L1527. Astrophys. J. 771, 48 (2013).

    ADS  Article  Google Scholar 

  47. 47.

    Miotello, A. et al. Grain growth in the envelopes and disks of Class I protostars. Astron. Astrophys. 567, A32 (2014).

    Article  Google Scholar 

  48. 48.

    Lee, C.-F. et al. First detection of equatorial dark dust lane in a protostellar disk at submillimeter wavelength. Sci. Adv. 3, e1602935 (2017).

    ADS  Article  Google Scholar 

  49. 49.

    Bohren, C. F. & Huffman, D. R. Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

    Google Scholar 

  50. 50.

    Weingartner, J. C. & Draine, B. T. Dust grain-size distributions and extinction in the Milky Way, Large Magellanic Cloud, and Small Magellanic Cloud. Astrophys. J. 548, 296–309 (2001).

    ADS  Article  Google Scholar 

  51. 51.

    Draine, B. T. Scattering by interstellar dust grains. I. Optical and ultraviolet. Astrophys. J. 598, 1017–1025 (2003).

    ADS  Article  Google Scholar 

  52. 52.

    Mathis, J. S., Rumpl, W. & Nordsieck, K. H. The size distribution of interstellar grains. Astrophys. J. 217, 425–433 (1977).

    ADS  Article  Google Scholar 

  53. 53.

    Draine, B. T. On the submillimeter opacity of protoplanetary disks. Astrophys. J. 636, 1114–1120 (2006).

    ADS  Article  Google Scholar 

  54. 54.

    Wilson, T. L. & Rood, R. Abundances in the interstellar medium. Annu. Rev. Astron. Astrophys. 32, 191–226 (1994).

    ADS  Article  Google Scholar 

  55. 55.

    Harsono, D., Visser, R., Bruderer, S., van Dishoeck, E. F. & Kristensen, L. E. Evolution of CO lines in time-dependent models of protostellar disk formation. Astron. Astrophys. 555, A45 (2013).

    Article  Google Scholar 

  56. 56.

    Jones, E. et al. SciPy: Open Source Scientific Tools for Python (2001); http://www.scipy.org/

  57. 57.

    Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC hammer. Publ. Astron. Soc. Pacif. 125, 306–312 (2013).

    ADS  Article  Google Scholar 

  58. 58.

    Murillo, N. M., Lai, S.-P., Bruderer, S., Harsono, D. & van Dishoeck, E. F. A Keplerian disk around a Class 0 source: ALMA observations of VLA1623A. Astron. Astrophys. 560, A103 (2013).

    Article  Google Scholar 

  59. 59.

    White, R. J. & Hillenbrand, L. A. On the evolutionary status of Class I stars and Herbig–Haro energy sources in Taurus–Auriga. Astrophys. J. 616, 998–1032 (2004).

    ADS  Article  Google Scholar 

  60. 60.

    Ansdell, M. et al. ALMA survey of Lupus protoplanetary disks. I. Dust and gas masses. Astrophys. J. 828, 46 (2016).

    ADS  Article  Google Scholar 

  61. 61.

    Kama, M. et al. Observations and modelling of CO and [C i] in protoplanetary disks. First detections of [C i] and constraints on the carbon abundance. Astron. Astrophys. 588, A108 (2016).

    Article  Google Scholar 

  62. 62.

    Guilloteau, S. et al. Chemistry in disks. X. The molecular content of protoplanetary disks in Taurus. Astron. Astrophys. 592, A124 (2016).

    Article  Google Scholar 

  63. 63.

    Miotello, A. et al. Lupus disks with faint CO isotopologues: low gas/dust or high carbon depletion? Astron. Astrophys. 599, A113 (2017).

    Article  Google Scholar 

  64. 64.

    van 't Hoff, M. L. R., Tobin, J. J., Harsono, D. & van Dishoeck, E. F. Unveiling the physical conditions of the youngest disks: A warm embedded disk in L1527. Astron. Astrophys. https://doi.org/10.1051/0004-6361/201732313 (2018).

  65. 65.

    de la Villarmois, E. A. et al. Chemistry of a newly detected circumbinary disk in Ophiuchus. Astron. Astrophys. https://doi.org/10.1051/0004-6361/201731603 (2018).

  66. 66.

    Schöier, F. L., van der Tak, F. F. S., van Dishoeck, E. F. & Black, J. H. An atomic and molecular database for analysis of submillimetre line observations. Astron. Astrophys. 432, 369–379 (2005).

    ADS  Article  Google Scholar 

  67. 67.

    Yang, B., Stancil, P. C., Balakrishnan, N. & Forrey, R. C. Rotational quenching of CO due to H2 collisions. Astrophys. J. 718, 1062–1069 (2010).

    ADS  Article  Google Scholar 

  68. 68.

    Neufeld, D. A. Collisional excitation of far-infrared line emissions from warm interstellar carbon monoxide (CO). Astrophys. J. 749, 125 (2012).

    ADS  Article  Google Scholar 

  69. 69.

    Harsono, D., Bruderer, S. & van Dishoeck, E. F. Volatile snowlines in embedded disks around low-mass protostars. Astron. Astrophys. 582, A41 (2015).

    Article  Google Scholar 

  70. 70.

    Kristensen, L. E. et al. Water in star-forming regions with Herschel (WISH). II. Evolution of 557 GHz 110–101 emission in low-mass protostars. Astron. Astrophys. 542, A8 (2012).

    Article  Google Scholar 

  71. 71.

    Yvart, W., Cabrit, S., Pineau des Forêts, G. & Ferreira, J. Molecule survival in magnetized protostellar disk winds. II. Predicted H2O line profiles versus Herschel/HIFI observations. Astron. Astrophys. 585, A74 (2016).

    ADS  Article  Google Scholar 

  72. 72.

    van Dishoeck, E. F. et al. Water in star-forming regions with the Herschel Space Observatory (WISH). I. Overview of key program and first results. Publ. Astron. Soc. Pac. 123, 138–170 (2011).

    ADS  Article  Google Scholar 

  73. 73.

    Kratter, K. & Lodato, G. Gravitational instabilities in circumstellar disks. Annu. Rev. Astron. Astrophys. 54, 271–311 (2016).

    ADS  Article  Google Scholar 

  74. 74.

    Lodato, G. & Rice, W. K. M. Testing the locality of transport in self-gravitating accretion discs—II. The massive disc case. Mon. Not. R. Astron. Soc. 358, 1489–1500 (2005).

    ADS  Article  Google Scholar 

  75. 75.

    Cossins, P., Lodato, G. & Clarke, C. J. Characterizing the gravitational instability in cooling accretion discs. Mon. Not. R. Astron. Soc. 393, 1157–1173 (2009).

    ADS  Article  Google Scholar 

  76. 76.

    Shakura, N. I. & Sunyaev, R. A. Black holes in binary systems. Observational appearance. Astron. Astrophys. 24, 337–355 (1973).

    ADS  Google Scholar 

  77. 77.

    Kratter, K. M., Matzner, C. D., Krumholz, M. R., & Klein, R. I. On the role of disks in the formation of stellar systems: a numerical parameter study of rapid accretion. Astrophys. J. 708, 1585–1597 (2010).

    ADS  Article  Google Scholar 

  78. 78.

    Bruderer, S. Survival of molecular gas in cavities of transition disks. I. CO. Astron. Astrophys. 559, A46 (2013).

    ADS  Article  Google Scholar 

  79. 79.

    Visser, R., van Dishoeck, E. F. & Black, J. H. The photodissociation and chemistry of CO isotopologues: applications to interstellar clouds and circumstellar disks. Astron. Astrophys. 503, 323–343 (2009).

    ADS  Article  Google Scholar 

  80. 80.

    van Dishoeck, E. F., Jonkheid, B. & van Hemert, M. C. Photoprocesses in protoplanetary disks. Faraday Discuss. 133, 231–243 (2006).

    ADS  Article  Google Scholar 

Download references


This paper makes use of the following ALMA data: ADS/JAO.ALMA#2015.1.01415.S. ALMA is a partnership of ESO (representing its member states), NSF (USA) and NINS (Japan), together with NRC (Canada) and NSC and ASIAA (Taiwan) and KASI (Republic of Korea), in cooperation with the Republic of Chile. The Joint ALMA Observatory is operated by ESO, AUI/NRAO and NAOJ. We thank Allegro, the European ALMA Regional Centre node in the Netherlands, for providing the facilities and assistance in recalibrating and imaging of the data. Furthermore, D.H. thanks M. Hogerheijde, A. Bosman and E. van Dishoeck for discussions. D.H. is supported by EU ERC Advanced Grant 291141 “CHEMPLAN” and by a KNAW professor prize awarded to E. van Dishoeck. D.H. and L.T.M. are part of Allegro, which is funded by the Netherlands Organisation for Scientific Research (NWO). P.B. acknowledges support by the Swedish Research Council (VR) through contracts 2013-00472 and 2017-04924. The group of J.K.J. acknowledges support from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 646908) through ERC Consolidator Grant “S4F”. Research at the Centre for Star and Planet Formation is funded by the Danish National Research Foundation (DNRF97).

Author information




D.H. and L.T.M. were responsible for the data re-calibration and reduction. DH was responsible for the analysis and wrote the manuscript together with P.B., M.H.D.v.d.W. and J.P.R. M.H.D.v.d.W. and P.B. composed the observing proposal, with contributions from D.H., J.P.R. and J.K.J. All authors contributed at various stages to the data analysis, discussed the results and contributed to the manuscript.

Corresponding author

Correspondence to Daniel Harsono.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–2

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Harsono, D., Bjerkeli, P., van der Wiel, M.H.D. et al. Evidence for the start of planet formation in a young circumstellar disk. Nat Astron 2, 646–651 (2018). https://doi.org/10.1038/s41550-018-0497-x

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing