Letter | Published:

Evidence for the start of planet formation in a young circumstellar disk


The growth of dust grains in protoplanetary disks is a necessary first step towards planet formation1. This growth has been inferred from observations of thermal dust emission2 towards mature protoplanetary systems (age >2 million years) with masses that are, on average, similar to Neptune3. In contrast, the majority of confirmed exoplanets are heavier than Neptune4. Given that young protoplanetary disks are more massive than their mature counterparts, this suggests that planet formation starts early, but evidence for grain growth that is spatially and temporally coincident with a massive reservoir in young disks remains scarce. Here, we report observations on a lack of emission of carbon monoxide isotopologues within the inner ~15 au of a very young (age ~100,000 years) disk around the solar-type protostar TMC1A. By using the absence of spatially resolved molecular line emission to infer the gas and dust content of the disk, we conclude that shielding by millimetre-size grains is responsible for the lack of emission. This suggests that grain growth and millimetre-size dust grains can be spatially and temporally coincident with a mass reservoir sufficient for giant planet formation. Hence, planet formation starts during the earliest, embedded phases in the life of young stars.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Testi, L. et al. in Protostars and Planets VI (eds Beuther, H., Dullemond, C. & Henning, T.) 339–362 (Univ. Arizona Press, Tucson, 2014).

  2. 2.

    Beckwith, S. V. W., Sargent, A. I., Chini, R. S. & Guesten, R. A survey for circumstellar disks around young stellar objects. Astrophys. J. 99, 924–945 (1990).

  3. 3.

    Pascucci, I. et al. A steeper than linear disk mass–stellar mass scaling relation. Astrophys. J. 831, 125 (2016).

  4. 4.

    The Extrasolar Planets Encyclopaedia (Paris Observatory, Paris, accessed 20 December 2017); http://www.exoplanet.eu

  5. 5.

    Harsono, D. et al. Rotationally-supported disks around Class I sources in Taurus: disk formation constraints. Astron. Astrophys. 562, A77 (2014).

  6. 6.

    Aso, Y. et al. ALMA observations of the transition from infall motion to Keplerian rotation around the late-phase protostar TMC-1A. Astrophys. J. 812, 27 (2015).

  7. 7.

    Lada, C. J. Star formation—from OB associations to protostars. IAU Symp. 115, 1–18 (1987).

  8. 8.

    Hogerheijde, M. R., van Dishoeck, E. F., Blake, G. A. & van Langevelde, H. J. Envelope structure on 700 au scales and the molecular outflows of low-mass young stellar objects. Astrophys. J. 502, 315–336 (1998).

  9. 9.

    Bjerkeli, P., van der Wiel, M. H. D., Harsono, D., Ramsey, J. P. & Jørgensen, J. K. Resolved images of a protostellar outflow driven by an extended disk wind. Nature 540, 406–409 (2016).

  10. 10.

    Chandler, C. J., Terebey, S., Barsony, M. & Moore, T. J. T. The small-scale outflow structure of embedded sources in Taurus. Astrophys. Space Sci. 224, 109–112 (1995).

  11. 11.

    ALMA Partnership. et al. The 2014 ALMA Long Baseline Campaign: first results from high angular resolution observations toward the HL Tau region. Astrophys. J. Lett. 808, L3 (2015).

  12. 12.

    Zhang, K., Blake, G. A. & Bergin, E. A. Evidence of fast pebble growth near condensation fronts in the HL Tau protoplanetary disk. Astrophys. J. Lett. 806, L7 (2015).

  13. 13.

    Andrews, S. M. et al. Ringed substructure and a gap at 1 au in the nearest protoplanetary disk. Astrophys. J. Lett. 820, L40 (2016).

  14. 14.

    Pérez, L. M. et al. Spiral density waves in a young protoplanetary disk. Science 353, 1519–1521 (2016).

  15. 15.

    Herczeg, G. J., Brown, J. M., van Dishoeck, E. F. & Pontoppidan, K. M. Disks and outflows in CO rovibrational emission from embedded, low-mass young stellar objects. Astron. Astrophys. 533, A112 (2011).

  16. 16.

    Bruderer, S., van Dishoeck, E. F., Doty, S. D. & Herczeg, G. J. The warm gas atmosphere of the HD 100546 disk seen by Herschel. Evidence of a gas-rich, carbon-poor atmosphere? Astron. Astrophys. 541, A91 (2012).

  17. 17.

    Robitaille, T. P. HYPERION: an open-source parallelized three-dimensional dust continuum radiative transfer code. Astron. Astrophys. 536, A79 (2011).

  18. 18.

    Lodato, G. & Rice, W. K. M. Testing the locality of transport in self-gravitating accretion discs. Mon. Not. R. Astron. Soc. 351, 630–642 (2004).

  19. 19.

    Ossenkopf, V. & Henning, T. Dust opacities for protostellar cores. Astron. Astrophys. 291, 943–959 (1994).

  20. 20.

    Henning, T., Michel, B. & Stognienko, R. Dust opacities in dense regions. Planet. Space. Sci. 43, 1333–1343 (1995).

  21. 21.

    Launhardt, R. et al. The Earliest Phases of Star Formation (EPoS): a Herschel key project. The thermal structure of low-mass molecular cloud cores. Astron. Astrophys. 551, A98 (2013).

  22. 22.

    Ricci, L. et al. Dust properties of protoplanetary disks in the Taurus–Auriga star forming region from millimeter wavelengths. Astron. Astrophys. 512, A15 (2010).

  23. 23.

    Andrews, S. M. in New Trends in Radio Astronomy in the ALMA Era: The 30th Anniversary of Nobeyama Radio Observatory (eds Kawabe, R., Kuno, N. & Yamamoto, S.) 149–156 (Coference Series no. 476, Astronomical Society of the Pacific, 2013).

  24. 24.

    Andrews, S. M., Wilner, D. J., Hughes, A. M., Qi, C. & Dullemond, C. P. Protoplanetary disk structures in Ophiuchus. Astrophys. J. 700, 1502–1523 (2009).

  25. 25.

    Visser, R., van Dishoeck, E. F., Doty, S. D. & Dullemond, C. P. The chemical history of molecules in circumstellar disks. I. Ices. Astron. Astrophys. 495, 881–897 (2009).

  26. 26.

    Mizuno, H. Formation of the giant planets. Progress. Theor. Phys. 64, 544–557 (1980).

  27. 27.

    Lambrechts, M. & Johansen, A. Forming the cores of giant planets from the radial pebble flux in protoplanetary discs. Astron. Astrophys. 572, A107 (2014).

  28. 28.

    Lambrechts, M. & Johansen, A. Rapid growth of gas-giant cores by pebble accretion. Astron. Astrophys. 544, A32 (2012).

  29. 29.

    Ida, S., Guillot, T. & Morbidelli, A. The radial dependence of pebble accretion rates: a source of diversity in planetary systems. I. Analytical formulation. Astron. Astrophys. 591, A72 (2016).

  30. 30.

    Davis, A. M. et al. in Protostars and Planets VI (eds Beuther, H., Dullemond, C. & Henning, T.) 809–831 (Univ. Arizona Press, Tucson, 2014).

  31. 31.

    Connelly, J. N. et al. The absolute chronology and thermal processing of solids in the solar protoplanetary disk. Science 338, 651–655 (2012).

  32. 32.

    Carilli, C. L. & Holdaway, M. A. Tropospheric phase calibration in millimeter interferometry. Radio Sci. 34, 817–840 (1999).

  33. 33.

    Maud, L. T. et al. Phase correction for ALMA. Investigating water vapour radiometer scaling: the long-baseline science verification data case study. Astron. Astrophys. 605, A121 (2017).

  34. 34.

    Consortium, A. M. I. et al. Radio continuum observations of Class I protostellar discs in Taurus: constraining the greybody tail at centimetre wavelengths. Mon. Not. R. Astron. Soc. 420, 3334–3343 (2012).

  35. 35.

    Ubach, C. et al. Radio monitoring of protoplanetary discs. Mon. Not. R. Astron. Soc. 466, 4083–4093 (2017).

  36. 36.

    Briggs, D. S. High fidelity interferometric imaging: robust weighting and NNLS deconvolution. Bull. Am. Astron. Soc. 27, 1444 (1995).

  37. 37.

    Draine, B. T. et al. Dust masses, PAH abundances, and starlight intensities in the SINGS galaxy sample. Astrophys. J. 663, 866–894 (2007).

  38. 38.

    Hueso, R. & Guillot, T. Evolution of protoplanetary disks: constraints from DM Tauri and GM Aurigae. Astron. Astrophys. 442, 703–725 (2005).

  39. 39.

    Robitaille, T. P., Whitney, B. A., Indebetouw, R., Wood, K. & Denzmore, P. Interpreting spectral energy distributions from young stellar objects. I. A grid of 200,000 YSO Model SEDs. Astrophys. J. Suppl. Ser. 167, 256–285 (2006).

  40. 40.

    Takakuwa, S. et al. A Keplerian circumbinary disk around the protostellar system L1551 NE. Astrophys. J. 754, 52 (2012).

  41. 41.

    Andrews, S. M. et al. Resolved images of large cavities in protoplanetary transition disks. Astrophys. J. 732, 42 (2011).

  42. 42.

    Lee, C.-F. et al. SiO shocks of the protostellar jet HH 212: a search for jet rotation. Astrophys. J. 685, 1026–1032 (2008).

  43. 43.

    Jørgensen, J. K. et al. PROSAC: a submillimeter array survey of low-mass protostars. II. The mass evolution of envelopes, disks, and stars from the Class 0 through I stages. Astron. Astrophys. 507, 861–879 (2009).

  44. 44.

    Kwon, W., Looney, L. W., Mundy, L. G., Chiang, H.-F. & Kemball, A. J. Grain growth and density distribution of the youngest protostellar systems. Astrophys. J. 696, 841–852 (2009).

  45. 45.

    Chiang, H.-F., Looney, L. W. & Tobin, J. J. The envelope and embedded disk around the Class 0 protostar L1157-mm: dual-wavelength interferometric observations and modeling. Astrophys. J. 756, 168 (2012).

  46. 46.

    Tobin, J. J. et al. Modeling the resolved disk around the Class 0 Protostar L1527. Astrophys. J. 771, 48 (2013).

  47. 47.

    Miotello, A. et al. Grain growth in the envelopes and disks of Class I protostars. Astron. Astrophys. 567, A32 (2014).

  48. 48.

    Lee, C.-F. et al. First detection of equatorial dark dust lane in a protostellar disk at submillimeter wavelength. Sci. Adv. 3, e1602935 (2017).

  49. 49.

    Bohren, C. F. & Huffman, D. R. Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

  50. 50.

    Weingartner, J. C. & Draine, B. T. Dust grain-size distributions and extinction in the Milky Way, Large Magellanic Cloud, and Small Magellanic Cloud. Astrophys. J. 548, 296–309 (2001).

  51. 51.

    Draine, B. T. Scattering by interstellar dust grains. I. Optical and ultraviolet. Astrophys. J. 598, 1017–1025 (2003).

  52. 52.

    Mathis, J. S., Rumpl, W. & Nordsieck, K. H. The size distribution of interstellar grains. Astrophys. J. 217, 425–433 (1977).

  53. 53.

    Draine, B. T. On the submillimeter opacity of protoplanetary disks. Astrophys. J. 636, 1114–1120 (2006).

  54. 54.

    Wilson, T. L. & Rood, R. Abundances in the interstellar medium. Annu. Rev. Astron. Astrophys. 32, 191–226 (1994).

  55. 55.

    Harsono, D., Visser, R., Bruderer, S., van Dishoeck, E. F. & Kristensen, L. E. Evolution of CO lines in time-dependent models of protostellar disk formation. Astron. Astrophys. 555, A45 (2013).

  56. 56.

    Jones, E. et al. SciPy: Open Source Scientific Tools for Python (2001); http://www.scipy.org/

  57. 57.

    Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC hammer. Publ. Astron. Soc. Pacif. 125, 306–312 (2013).

  58. 58.

    Murillo, N. M., Lai, S.-P., Bruderer, S., Harsono, D. & van Dishoeck, E. F. A Keplerian disk around a Class 0 source: ALMA observations of VLA1623A. Astron. Astrophys. 560, A103 (2013).

  59. 59.

    White, R. J. & Hillenbrand, L. A. On the evolutionary status of Class I stars and Herbig–Haro energy sources in Taurus–Auriga. Astrophys. J. 616, 998–1032 (2004).

  60. 60.

    Ansdell, M. et al. ALMA survey of Lupus protoplanetary disks. I. Dust and gas masses. Astrophys. J. 828, 46 (2016).

  61. 61.

    Kama, M. et al. Observations and modelling of CO and [C i] in protoplanetary disks. First detections of [C i] and constraints on the carbon abundance. Astron. Astrophys. 588, A108 (2016).

  62. 62.

    Guilloteau, S. et al. Chemistry in disks. X. The molecular content of protoplanetary disks in Taurus. Astron. Astrophys. 592, A124 (2016).

  63. 63.

    Miotello, A. et al. Lupus disks with faint CO isotopologues: low gas/dust or high carbon depletion? Astron. Astrophys. 599, A113 (2017).

  64. 64.

    van 't Hoff, M. L. R., Tobin, J. J., Harsono, D. & van Dishoeck, E. F. Unveiling the physical conditions of the youngest disks: A warm embedded disk in L1527. Astron. Astrophys. https://doi.org/10.1051/0004-6361/201732313 (2018).

  65. 65.

    de la Villarmois, E. A. et al. Chemistry of a newly detected circumbinary disk in Ophiuchus. Astron. Astrophys. https://doi.org/10.1051/0004-6361/201731603 (2018).

  66. 66.

    Schöier, F. L., van der Tak, F. F. S., van Dishoeck, E. F. & Black, J. H. An atomic and molecular database for analysis of submillimetre line observations. Astron. Astrophys. 432, 369–379 (2005).

  67. 67.

    Yang, B., Stancil, P. C., Balakrishnan, N. & Forrey, R. C. Rotational quenching of CO due to H2 collisions. Astrophys. J. 718, 1062–1069 (2010).

  68. 68.

    Neufeld, D. A. Collisional excitation of far-infrared line emissions from warm interstellar carbon monoxide (CO). Astrophys. J. 749, 125 (2012).

  69. 69.

    Harsono, D., Bruderer, S. & van Dishoeck, E. F. Volatile snowlines in embedded disks around low-mass protostars. Astron. Astrophys. 582, A41 (2015).

  70. 70.

    Kristensen, L. E. et al. Water in star-forming regions with Herschel (WISH). II. Evolution of 557 GHz 110–101 emission in low-mass protostars. Astron. Astrophys. 542, A8 (2012).

  71. 71.

    Yvart, W., Cabrit, S., Pineau des Forêts, G. & Ferreira, J. Molecule survival in magnetized protostellar disk winds. II. Predicted H2O line profiles versus Herschel/HIFI observations. Astron. Astrophys. 585, A74 (2016).

  72. 72.

    van Dishoeck, E. F. et al. Water in star-forming regions with the Herschel Space Observatory (WISH). I. Overview of key program and first results. Publ. Astron. Soc. Pac. 123, 138–170 (2011).

  73. 73.

    Kratter, K. & Lodato, G. Gravitational instabilities in circumstellar disks. Annu. Rev. Astron. Astrophys. 54, 271–311 (2016).

  74. 74.

    Lodato, G. & Rice, W. K. M. Testing the locality of transport in self-gravitating accretion discs—II. The massive disc case. Mon. Not. R. Astron. Soc. 358, 1489–1500 (2005).

  75. 75.

    Cossins, P., Lodato, G. & Clarke, C. J. Characterizing the gravitational instability in cooling accretion discs. Mon. Not. R. Astron. Soc. 393, 1157–1173 (2009).

  76. 76.

    Shakura, N. I. & Sunyaev, R. A. Black holes in binary systems. Observational appearance. Astron. Astrophys. 24, 337–355 (1973).

  77. 77.

    Kratter, K. M., Matzner, C. D., Krumholz, M. R., & Klein, R. I. On the role of disks in the formation of stellar systems: a numerical parameter study of rapid accretion. Astrophys. J. 708, 1585–1597 (2010).

  78. 78.

    Bruderer, S. Survival of molecular gas in cavities of transition disks. I. CO. Astron. Astrophys. 559, A46 (2013).

  79. 79.

    Visser, R., van Dishoeck, E. F. & Black, J. H. The photodissociation and chemistry of CO isotopologues: applications to interstellar clouds and circumstellar disks. Astron. Astrophys. 503, 323–343 (2009).

  80. 80.

    van Dishoeck, E. F., Jonkheid, B. & van Hemert, M. C. Photoprocesses in protoplanetary disks. Faraday Discuss. 133, 231–243 (2006).

Download references


This paper makes use of the following ALMA data: ADS/JAO.ALMA#2015.1.01415.S. ALMA is a partnership of ESO (representing its member states), NSF (USA) and NINS (Japan), together with NRC (Canada) and NSC and ASIAA (Taiwan) and KASI (Republic of Korea), in cooperation with the Republic of Chile. The Joint ALMA Observatory is operated by ESO, AUI/NRAO and NAOJ. We thank Allegro, the European ALMA Regional Centre node in the Netherlands, for providing the facilities and assistance in recalibrating and imaging of the data. Furthermore, D.H. thanks M. Hogerheijde, A. Bosman and E. van Dishoeck for discussions. D.H. is supported by EU ERC Advanced Grant 291141 “CHEMPLAN” and by a KNAW professor prize awarded to E. van Dishoeck. D.H. and L.T.M. are part of Allegro, which is funded by the Netherlands Organisation for Scientific Research (NWO). P.B. acknowledges support by the Swedish Research Council (VR) through contracts 2013-00472 and 2017-04924. The group of J.K.J. acknowledges support from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 646908) through ERC Consolidator Grant “S4F”. Research at the Centre for Star and Planet Formation is funded by the Danish National Research Foundation (DNRF97).

Author information

D.H. and L.T.M. were responsible for the data re-calibration and reduction. DH was responsible for the analysis and wrote the manuscript together with P.B., M.H.D.v.d.W. and J.P.R. M.H.D.v.d.W. and P.B. composed the observing proposal, with contributions from D.H., J.P.R. and J.K.J. All authors contributed at various stages to the data analysis, discussed the results and contributed to the manuscript.

Competing interests

The authors declare no competing interests.

Correspondence to Daniel Harsono.

Supplementary information

  1. Supplementary Information

    Supplementary Figures 1–2

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark
Fig. 1: Dust continuum and integrated 13CO and C18O emission map of TMC1A.
Fig. 2: Channel maps for 13CO and C18O.
Fig. 3: Observed and simulated C18O emission maps.