Letter | Published:

Anomalous microwave emission from spinning nanodiamonds around stars

Nature Astronomyvolume 2pages662667 (2018) | Download Citation

Abstract

Several interstellar environments produce anomalous microwave emission (AME), with brightness peaks at tens-of-gigahertz frequencies1. The emission’s origins are uncertain; rapidly spinning nanoparticles could emit electric-dipole radiation2, but the polycyclic aromatic hydrocarbons that have been proposed as the carrier are now found not to correlate with Galactic AME signals3,4. The difficulty is in identifying co-spatial sources over long lines of sight. Here, we identify AME in three protoplanetary disks. These are the only known systems that host hydrogenated nanodiamonds5, in contrast with the very common detection of polycyclic aromatic hydrocarbons6. Using spectroscopy, the nanodiamonds are located close to the host stars, at physically well-constrained temperatures7. Developing disk models8, we reproduce the emission with diamonds 0.75–1.1 nm in radius, holding ≤1–2% of the carbon budget. Ratios of microwave emission to stellar luminosity are approximately constant, allowing nanodiamonds to be ubiquitous, but emitting below the detection threshold in many star systems. This result is compatible with the findings of similar-sized diamonds within Solar System meteorites9. As nanodiamond spectral absorption is seen in interstellar sightlines10, these particles are also a candidate for generating galaxy-scale3 AME.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Kogut, A. et al. Microwave emission at high galactic latitudes in the four-year DMR sky maps. Astrophys. J. Lett. 464, L5–L9 (1996).

  2. 2.

    Draine, B. T. & Lazarian, A. Electric dipole radiation from spinning dust grains. Astrophys. J. 508, 157–179 (1998).

  3. 3.

    Planck Consortium et al. Planck intermediate results. XXIII. Galactic plane emission components derived from Planck with ancillary data. Astron. Astrophys. 580, A13 (2015).

  4. 4.

    Hensley, B. S., Draine, B. T. & Meisner, A. M. A case against spinning PAHs as the source of the anomalous microwave emission. Astrophys. J. 827, 45 (2016).

  5. 5.

    Acke, B. & van den Ancker, M. E. A survey for nanodiamond features in the 3 micron spectra of Herbig Ae/Be stars. Astron. Astrophys. 457, 171–181 (2006).

  6. 6.

    Keller, L. D. et al. PAH emission from Herbig Ae/Be stars. Astrophys. J. 684, 411–429 (2008).

  7. 7.

    Goto, M. et al. Spatially resolved 3 μm spectroscopy of Elias 1: origin of diamonds in protoplanetary disks. Astrophys. J. 693, 610–616 (2009).

  8. 8.

    Rafikov, R. R. Microwave emission from spinning dust in circumstellar disks. Astrophys. J. 646, 288–296 (2006).

  9. 9.

    Ott, H. Nanodiamonds in meteorites: properties and astrophysical context. J. Achiev. Mater. Manuf. Eng. 37, 779–784 (2009).

  10. 10.

    Allamandola, L. J., Sandford, S. A., Tielens, A. G. G. M. & Herbst, T. M. Infrared spectroscopy of dense clouds in the C–H stretch region—methanol and ‘diamonds’. Astrophys. J. 399, 134–146 (1992).

  11. 11.

    Mohanty, S. et al. Protoplanetary disk masses from stars to brown dwarfs. Astrophys. J. 773, 168 (2013).

  12. 12.

    Menu, J. et al. The structure of disks around intermediate-mass young stars from mid-infrared interferometry. Evidence for a population of group II disks with gaps. Astron. Astrophys. 581, A107 (2015).

  13. 13.

    Blades, J. C. & Whittet, D. C. B. Observations of unidentified infrared features in the pre-main sequence star HD 97048. Mon. Not. R. Astron. Soc. 191, 701–709 (1980).

  14. 14.

    Guillois, O., Ledoux, G. & Reynaud, C. Diamond infrared emission bands in circumstellar media. Astrophys. J. 521, L133–L136 (1999).

  15. 15.

    Miyahara, M. et al. Unique large diamonds in a ureilite from Almahata Sitta 2008 TC3 asteroid. Geochim. Cosmochim. Acta 163, 14–26 (2015).

  16. 16.

    Acke, B. & van den Ancker, M. E. ISO spectroscopy of disks around Herbig Ae/Be stars. Astron. Astrophys. 426, 151–170 (2004).

  17. 17.

    Geers, V. C. et al. C2D Spitzer-IRS spectra of disks around T Tauri stars. II. PAH emission features. Astron. Astrophys. 459, 545–556 (2006).

  18. 18.

    Bernstein, L. S., Clark, F. O., Cline, J. A. & Lynch, D. K. The diffuse interstellar bands and anomalous microwave emission may originate from the same carriers. Astrophys. J. 813, 122 (2015).

  19. 19.

    Hensley, B. S. & Draine, B. T. Modeling the anomalous microwave emission with spinning nanoparticles: no PAHs required. Astrophys. J. 836, 179 (2017).

  20. 20.

    Pascucci, I. et al. Low extreme-ultraviolet luminosities impinging on protoplanetary disks. Astrophys. J. 715, 1 (2014).

  21. 21.

    Bauschlicher, C. W., Liu, Y., Ricca, A., Mattioda, A. L. & Allamandola, L. J. Electronic and vibrational spectroscopy of diamondoids and the interstellar infrared bands between 3.35 and 3.55 μm. Astrophys. J. 671, 458–469 (2007).

  22. 22.

    Steglich, M., Huisken, F., Dahl, J. E., Carlson, R. M. & Henning, T. Electronic spectroscopy of FUV-irradiated diamondoids: a combined experimental and theoretical study. Astrophys. J. 729, 91 (2011).

  23. 23.

    Pirali, O. et al. Infrared spectroscopy of diamondoid molecules: new insights into the presence of nanodiamonds in the interstellar medium. Astrophys. J. 661, 919–925 (2007).

  24. 24.

    Terada, H., Imanishi, M., Goto, M. & Maihara, T. Detection of the unusual 3.5 μm feature in the Herbig Be star MWC 297. Astron. Astrophys. 377, 994–998 (2001).

  25. 25.

    Habart, E., Testi, L., Natta, A. & Carbillet, M. Diamonds in HD 97048: a closer look. Astrophys. J. 614, L129–L132 (2004).

  26. 26.

    Siebenmorgen, R., Kruegel, E. & Mathis, J. S. Radiative transfer for transiently heated particles. Astron. Astrophys. 266, 501–512 (1992).

  27. 27.

    Castelli, F. & Kurucz, R. Castelli and Kurucz Atlas (2004); http://www.stsci.edu/hst/observatory/crds/castelli_kurucz_atlas.html

  28. 28.

    Scaife, A. M. M. et al. Microwave observations of spinning dust emission in NGC6946. Mon. Not. R. Astron. Soc. 406, L45–L49 (2010).

  29. 29.

    Campbell, E. K., Gerlich, D. & Maier, J. P. Laboratory confirmation of C60 + as the carrier of two diffuse interstellar bands. Nature 523, 322–323 (2015).

  30. 30.

    Roberts, K. R. G., Smith, K. T. & Sarre, P. J. Detection of C60 in embedded young stellar objects, a Herbig Ae/Be star and an unusual post‐asymptotic giant branch star. Mon. Not. R. Astron. Soc. 421, 3277–3285 (2012).

  31. 31.

    Perley, R. & Butler, B. J. An accurate flux density scale from 1 to 50 GHz. Astron. J. 204, 19 (2013).

  32. 32.

    Zwart, J. T. L. et al. The arcminute microkelvin imager. Mon. Not. R. Astron. Soc. 391, 1545–1558 (2008).

  33. 33.

    Hamidouche, M. Aperture synthesis imaging of V892 Tau and PV Cep: disk evolution. Astrophys. J. 722, 204–211 (2010).

  34. 34.

    Phillips, N. M. Far-infrared and Sub-millimetre Surveys of Circumstellar Discs. PhD thesis, Univ. Edinburgh (2011); https://www.era.lib.ed.ac.uk/handle/1842/5032

  35. 35.

    Dzib, S. A. et al. The Gould’s Belt Very Large Array Survey. IV. The Taurus–Auriga complex. Astrophys. J. 801, 91 (2015).

  36. 36.

    Di Francesco, J. et al. Millimeter and radio interferometry of Herbig Ae/Be stars. Astrophys. J. 482, 433–441 (1997).

  37. 37.

    Skinner, S. L., Brown, A. & Stewart, R. T. A high-sensitivity survey of radio continuum emission from Herbig Ae/Be stars. Astrophys. J. Supp. 87, 217–265 (1993).

  38. 38.

    Henning, T., Pfau, W., Zinnecker, H. & Prusti, T. A 1.3-mm survey of circumstellar dust around young chamaeleon objects. Astron. Astrophys. 276, 129–141 (1993).

  39. 39.

    Dunham, M. et al. An ALMA search for substructure, fragmentation, and hidden protostars in starless cores in Chamaeleon I. Astrophys. J. 823, 160 (2016).

  40. 40.

    Van der Plas, G. et al. A cavity and further radial substructures in the disk around HD 97048. Astron. Astrophys. 597, A32 (2017).

  41. 41.

    Frieswijk, W., Shipman, R. F., Lahuis, F. & Hormuth, F. SWS AOT-1 High Resolution Processing: Documentation Technical report number 52 (European Space Agency, 2007); http://ida.esac.esa.int:8080/hpdp/technical_reports/technote52.pdf

  42. 42.

    Van Kerckhoven, C., Tielens, A. G. G. M. & Waelkens, C. Nanodiamonds around HD 97048 and Elias 1. Astron. Astrophys. 384, 568–584 (2002).

  43. 43.

    Tanaka, M., Sato, S., Nagata, T. & Yamamoto, T. Three micron ice-band features in the Rho Ophiuchi sources. Astrophys. J. 352, 724–730 (1990).

  44. 44.

    Brooke, T. Y., Sellgren, K. & Smith, R. G. A study of absorption features in the 3 micron spectra of molecular cloud sources with H2O ice bands. Astrophys. J. 459, 209–215 (1996).

  45. 45.

    Sandell, G., Weintraub, D. A. & Hamidouche, M. A submillimeter mapping survey of Herbig AeBe stars. Astrophys. J. 727, 26 (2011).

Download references

Acknowledgements

The NRAO is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities. Infrared spectra are presented from the processed data archives of ESA’s ISO and NASA’s Spitzer Space Telescope. A. Avison at JBCA reduced the Atacama Large Millimeter/submillimeter Array observations of HD 97048. A.M.M.S. gratefully acknowledges support from the European Research Council under grant ERC-2012-StG-307215 LODESTONE. We thank the staff of the Lord’s Bridge Observatory for their assistance in the operation of the AMI. The AMI is supported by the University of Cambridge and the STFC.

Author information

Affiliations

  1. School of Physics and Astronomy, Cardiff University, Cardiff, UK

    • J. S. Greaves
  2. Jodrell Bank Centre for Astrophysics, Alan Turing Building, Manchester, UK

    • A. M. M. Scaife
  3. Green Bank Observatory, Green Bank, WV, USA

    • D. T. Frayer
  4. Astrophysics Group, Cavendish Laboratory, Cambridge, UK

    • D. A. Green
  5. National Radio Astronomy Observatory, Charlottesville, VA, USA

    • B. S. Mason
  6. DLR, Institut für Planetenforschung, Berlin, Germany

    • A. M. S. Smith

Authors

  1. Search for J. S. Greaves in:

  2. Search for A. M. M. Scaife in:

  3. Search for D. T. Frayer in:

  4. Search for D. A. Green in:

  5. Search for B. S. Mason in:

  6. Search for A. M. S. Smith in:

Contributions

J.S.G. led the project, analysed the GBT and ISO data, coded the initial models and drafted the paper. A.M.M.S. analysed the ATCA data, contributed AME and coding expertise, and wrote modelling sections of the paper. D.T.F., D.A.G., B.S.M. and A.M.S.S. contributed instrument, observation and software support, and commented on the paper.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to J. S. Greaves.

Supplementary information

  1. Supplementary Information

    Supplementary Figures 1–6, Supplementary Tables 1–3

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/s41550-018-0495-z