Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Coma morphology of comet 67P controlled by insolation over irregular nucleus


While the structural complexity of cometary comae is already recognizable from telescopic observations1, the innermost region, within a few radii of the nucleus, was not resolved until spacecraft exploration became a reality2,3. The dust coma displays jet-like features of enhanced brightness superposed on a diffuse background1,4,5. Some features can be traced to specific areas on the nucleus, and result conceivably from locally enhanced outgassing and/or dust emission6,7,8. However, diffuse or even uniform activity over topographic concavity can converge to produce jet-like features9,10. Therefore, linking observed coma morphology to the distribution of activity on the nucleus is difficult11,12. Here, we study the emergence of dust activity at sunrise on comet 67P/Churyumov–Gerasimenko using high-resolution, stereo images from the OSIRIS camera onboard the Rosetta spacecraft, where the sources and formation of the jet-like features are resolved. We perform numerical simulations to show that the ambient dust coma is driven by pervasive but non-uniform water outgassing from the homogeneous surface layer. Physical collimations of gas and dust flows occur at local maxima of insolation and also via topographic focusing. Coma structures are projected to exhibit jet-like features that vary with the perspective of the observer. For an irregular comet such as 67P/Churyumov–Gerasimenko, near-nucleus coma structures can be concealed in the shadow of the nucleus, which further complicates the picture.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Observed and synthetic gas and dust emission from morning terminators on 67P.
Fig. 2: Number density of water molecules at different altitudes above the terminator.
Fig. 3: Influence of topography and outgassing flux on near-nucleus coma structure.
Fig. 4: Dust coma in the neck region at the same local time but observed from different perspectives.


  1. Farnham, T. L. Coma morphology of Jupiter-family comets. Planet. Space Sci. 57, 1192–1217 (2009).

    ADS  Article  Google Scholar 

  2. Keller, H. U. et al. First Halley multicolour camera imaging results from Giotto. Nature 321, 320–326 (1986).

    ADS  Article  Google Scholar 

  3. Sagdeev, R. Z. et al. The spatial distribution of dust jets seen during the Vega 2 flyby. Astron. Astrophys. 187, 835–838 (1987).

    ADS  Google Scholar 

  4. Belton, M. J. Cometary activity, active areas, and a mechanism for collimated outflows on 1P, 9P, 19P, and 81P. Icarus 210, 881–897 (2010).

    ADS  Article  Google Scholar 

  5. Farnham, T. L. et al. Connections between the jet activity and surface features on Comet 9P/Tempel 1. Icarus 222, 540–549 (2013).

    ADS  Article  Google Scholar 

  6. Yelle, R. V., Soderblom, L. A. & Jokipii, J. R. Formation of jets in Comet 19P/Borrelly by subsurface geysers. Icarus 167, 30–36 (2004).

    ADS  Article  Google Scholar 

  7. Combi, M. R. et al. Narrow dust jets in a diffuse gas coma: a natural product of small active regions on comets. Astrophys. J. 749, 29 (2012).

    ADS  Article  Google Scholar 

  8. Vincent, J. et al. Are fractured cliffs the sources of cometary dust jets? Insights from OSIRIS/Rosetta at 67P. Astron. Astrophys. 587, A14 (2015).

    Article  Google Scholar 

  9. Crifo, J. F., Rodionov, A. V., Szego, K. & Fulle, M. Challenging a paradigm: do we need active and inactive areas to account for near-nuclear jet activity? Earth Moon Planets 90, 227–238 (2002).

    ADS  Article  Google Scholar 

  10. Kramer, T. & Noack, M. On the origin of inner coma structures observed by Rosetta during a diurnal rotation of comet 67P/Churyumov-Gerasimenko. Astrophys. J. 823, L11 (2016).

    ADS  Article  Google Scholar 

  11. Crifo, J. F., Fulle, M., Kömle, N. I. & Szego, K. in Comets II 471–503 (The University of Arizona Press, Tucson, 2004).

  12. Fulle, M. et al. Unexpected and significant findings in comet 67P/Churyumov-Gerasimenko: an interdisciplinary view. Mon. Not. R. Astron. Soc. 462, S2–S8 (2016).

    Article  Google Scholar 

  13. De Sanctis, M. C. et al. The diurnal cycle of water ice on comet 67P/Churyumov-Gerasimenko. Nature 525, 500–503 (2015).

    ADS  Article  Google Scholar 

  14. Rinaldi, G. et al. Properties of the dust in the coma of 67P/Churyumov–Gerasimenko observed with VIRTIS-M. Mon. Not. R. Astron. Soc. 462, 547–561 (2016).

    Article  Google Scholar 

  15. Hässig, M. et al. Time variability and heterogeneity in the coma of 67P/Churyumov-Gerasimenko. Science 347, aaa0276 (2015).

    Article  Google Scholar 

  16. Fougere, N. et al. Direct Simulation Monte Carlo modelling of the major species in the coma of comet 67P/Churyumov-Gerasimenko. Mon. Not. R. Astron. Soc. 462, 156–169 (2016).

    Article  Google Scholar 

  17. Sierks, H. et al. On the nucleus structure and activity of comet 67P/Churyumov-Gerasimenko. Science 347, aaa1044 (2015).

    Article  Google Scholar 

  18. Thomas, N. et al. The morphological diversity of comet 67P/Churyumov-Gerasimenko. Science 347, aaa0440 (2015).

    Article  Google Scholar 

  19. Lara, L. M. et al. Large-scale dust jets in the coma of 67P/Churyumov-Gerasimenko as seen by the OSIRIS instrument onboard Rosetta. Astron. Astrophys. 583, A9 (2015).

    Article  Google Scholar 

  20. Lin, Z.-Y. et al. Morphology and dynamics of jets of comet 67P/Churyumov-Gerasimenko: early phase development. Astron. Astrophys. 583, A11 (2015).

    Article  Google Scholar 

  21. Keller, H. U. et al. OSIRIS - the scientific camera system onboard Rosetta. Space Sci. Rev. 128, 433–506 (2007).

    ADS  Article  Google Scholar 

  22. Sunshine, J. M. et al. Water ice on comet 103P/Hartley 2. EPSC-DPS Joint Meeting 2011 abstr. 1345 (2011).

  23. Prialnik, D., A’Hearn, M. F. & Meech, K. J. A mechanism for short-lived cometary outbursts at sunrise as observed by Deep Impact on 9P/Tempel 1. Mon. Not. R. Astron. Soc. 388, L20–L23 (2008).

    ADS  Article  Google Scholar 

  24. Fornasier, S. et al. Rosetta's comet 67P/Churyumov-Gerasimenko sheds its dusty mantle to reveal its icy nature. Science 354, 1566–1570 (2016).

    ADS  Article  Google Scholar 

  25. Sunshine, J. M. et al. Exposed water ice deposits on the surface of comet 9P/Tempel 1. Science 311, 1453–1455 (2006).

    ADS  Article  Google Scholar 

  26. Keller, H. U. et al. Insolation, erosion, and morphology of comet 67P/Churyumov-Gerasimenko. Astron. Astrophys. 583, A34 (2015).

    Article  Google Scholar 

  27. Hu, X. et al. Thermal modeling of water activity on comet 67P/Churyumov-Gerasimenko with global dust mantle and plural dust-to-ice ratio. Mon. Not. R. Astron. Soc. 469, 295–311 (2017).

    Article  Google Scholar 

  28. Rose, M. Simulation of a complete triple turbo molecular pumping stage using direct simulation Monte Carlo in 3D. AIP Conf. Proc. 1628, 212–219 (2014).

    ADS  Article  Google Scholar 

  29. Huebner, W. F. et al. Heat and Gas Diffusion in Comet Nuclei ISSI Scientific Report SR-004 (International Space Science Institute, Bern, 2006).

  30. Migliorini, A. et al. Water and carbon dioxide distribution in the 67P/Churyumov-Gerasimenko coma from VIRTIS-M infrared observations. Astron. Astrophys. 589, A45 (2016).

    Article  Google Scholar 

  31. Shi, X. et al. Sunset jets observed on comet 67P/Churyumov-Gerasimenko sustained by subsurface thermal lag. Astron. Astrophys. 586, A7 (2016).

    Article  Google Scholar 

  32. Hu, X. et al. Seasonal erosion and restoration of the dust cover on comet 67P/Churyumov-Gerasimenko as observed by OSIRIS onboard Rosetta. Astron. Astrophys. 604, A114 (2017).

    Article  Google Scholar 

  33. Bird, G. A. Molecular Gas Dynamics and the Direct Simulation Monte Carlo of Gas Flows (Clarendon Press, Oxford, 1994).

  34. Jorda, L. et al. The global shape, density and rotation of Comet 67P/Churyumov-Gerasimenko from preperihelion Rosetta/OSIRIS observations. Icarus 277, 257–278 (2016).

    ADS  Article  Google Scholar 

  35. Fanale, P. & James Salvail, R. An idealized short-period comet model: surface insolation, H2O flux, dust flux, and mantle evolution. Icarus 60, 476–511 (1984).

    ADS  Article  Google Scholar 

  36. Marschall, R. et al. Modelling observations of the inner gas and dust coma of comet 67P/Churyumov-Gerasimenko using ROSINA/COPS and OSIRIS data: first results. Astron. Astrophys. 589, A90 (2016).

    Article  Google Scholar 

  37. Preusker, F. et al. Shape model, reference system definition, and cartographic mapping standards for comet 67P/Churyumov-Gerasimenko – stereo-photogrammetric analysis of Rosetta/OSIRIS image data. Astron. Astrophys. 583, A33 (2015).

    Article  Google Scholar 

  38. Werner, R. A. & Scheeres, D. J. Exterior gravitation of a polyhedron derived and compared with harmonic and mascon gravitation representations of asteroid 4769 Castalia. Celest. Mech. Dyn. Astr. 65, 313–344 (1997).

    ADS  Article  MATH  Google Scholar 

  39. Pätzold, M. et al. A homogeneous nucleus for comet 67P/Churyumov-Gerasimenko from its gravity field. Nature 530, 63–65 (2015).

    Article  Google Scholar 

  40. Grün, E. et al. Mechanisms of dust emission from the surface of a cometary nucleus. Adv. Space Res. 9, 133–137 (1989).

    ADS  Article  Google Scholar 

  41. Gombosi, T. I., Nagy, A. F. & Gravens, T. E. Dust and neutral gas modeling of the inner atmospheres of comets. Rev. Geophys. 24, 667–700 (1986).

    ADS  Article  Google Scholar 

Download references


OSIRIS was built by a consortium led by the Max-Planck-Institut für Sonnensystemforschung, Göttingen, Germany, in collaboration with CISAS, University of Padova, Italy, the Laboratoire d’Astrophysique de Marseille, France, the Instituto de Astrofísica de Andalucia, CSIC, Granada, Spain, the Scientific Support Office of the European Space Agency, Noordwijk, The Netherlands, the Instituto Nacional de Técnica Aeroespacial, Madrid, Spain, the Universidad Politéchnica de Madrid, Spain, the Department of Physics and Astronomy of Uppsala University, Sweden, and the Institut für Datentechnik und Kommunikationsnetze der Technischen Universität Braunschweig, Germany. The support of the national funding agencies of Germany (DLR), France (CNES), Italy (ASI), Spain (MEC), Sweden (SNSB) and the ESA Technical Directorate is gratefully acknowledged.

Author information

Authors and Affiliations



X.S. led this study, analysed imaging data, performed simulations for gas and dust field modelling, and drafted the manuscript. X.H. contributed to design of the study, performed part of the thermo-physical analysis and contributed to drafting the manuscript. S.M. contributed to the thermo-physical modelling of water activity along dawn terminator and contributed to improving the manuscript. M.R. carried out the development and modification of DSMC code used for cometary coma modelling. H.U.K. and M.F. contributed to interpretation of the results. H.S., C.G. and C.T. participated in early discussions of the study and helped improve the manuscript. S.F., M.P., J.A. and D.B. contributed to improving the manuscript. All remaining authors contributed to the construction, operation and calibration of OSIRIS cameras, which ensured the acquirement of high-quality data used for this study.

Corresponding author

Correspondence to X. Shi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–5, Supplementary Table 1, Supplementary Video 1 caption.

Supplementary Video 1

Trajectories of dust particles emitting from the Hapi region observed from a continuously changing perspective.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shi, X., Hu, X., Mottola, S. et al. Coma morphology of comet 67P controlled by insolation over irregular nucleus. Nat Astron 2, 562–567 (2018).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing