Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Gravitational waves and the long relativity revolution

Abstract

The recent discovery of gravitational waves is often seen as the confirmation of a prediction Einstein made one century ago. We argue instead that only after conceptual advances in general relativity between the mid-1950s and the early 1960s could such a prediction be made on the basis of unambiguous notions shared by a community of specialists. The conceptual transformation and the reorganization of knowledge related to general relativity that characterized this post-Second World War period can be used to properly understand the hitherto vaguely defined ‘renaissance of general relativity’. During its first phase, theoreticians took a conservative turn by refocusing on general relativity, after previously having worked on other research agendas mostly targeted at substituting general relativity with a superior theory. This turn was followed by a second phase that was characterized by a plurality of approaches to general relativity, which had in common the fact that they were able to develop intrinsically (generally) relativistic concepts, in particular radiation, rather than using other theories as an interpretative crutch.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Research centres working on general relativity in 1955.
Fig. 2: Network of research centres during the period 1955–1962.
Fig. 3: Comparison between the structures of the collaboration networks of scientists working in fields related to general relativity in 1954 and 1965.
Fig. 4: Co-citation network of the most cited papers related to general relativity from 1947 to 1974.
Fig. 5: The largest connected component of the collaboration network of general relativity in 1976.

Similar content being viewed by others

References

  1. Abbott, B. P. et al. (LIGO Scientific Collaboration and Virgo Collaboration) Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 116, 061102 (2016).

    Article  MathSciNet  ADS  Google Scholar 

  2. Siegel, E. Gravitational waves: from discovery of the year to science of the century. Forbes (27 December 2016); https://go.nature.com/2jvKjRb

  3. Einstein, A. Näherungsweise Integration der Feldgleichungen der Gravitation. Sitzber. K. Preuss. Aka. 688–696 (1916).

  4. Kramer, D. Gravitational waves are detected for first time. Phys. Today (12 February 2016); https://go.nature.com/2JSa0qi

  5. Will, C. M. Was Einstein Right?: Putting General Relativity to the Test. (Basic Books, New York, 1986).

    Google Scholar 

  6. Kennefick, D. Traveling at the Speed of Thought: Einstein and the Quest for Gravitational Waves (Princeton University Press, Princeton, 2007).

    Book  MATH  Google Scholar 

  7. Renn, J., Wintergrün, D., Lalli, R., Laubichler, M. & Valleriani, M. in Die Zukunft der Wissensspeicher : Forschen, Sammeln und Vermitteln im 21. Jahrhundert (eds Mittelstraß, J. & Rüdiger, U.) 35–79 (UVK Verlagsgesellschaft, 2016).

  8. Renn, J. in The Genesis of General Relativity (ed. Renn, J.) 1229–1255 (Springer, Berlin, 2007).

  9. Schwarzschild to Sommerfeld, 17 February 1916. Deutsches Museum Archiv NL 89, 059.

  10. Einstein to Schwarzschild, 19 February 1916 in The Collected Papers of Albert Einstein. Volume 8: The Berlin Years, 1914–1918 (English Supplement) (eds Schulmann, R. et al.) 196 (Princeton University Press, 1998).

  11. Einstein, A. Über Gravitationswellen. Sitzber. K. Preuss. Aka. 154–167 (1918).

  12. Einstein, A. & Rosen, N. On gravitational waves. J. Frankl. Inst. 223, 43–54 (1937).

    Article  MATH  ADS  Google Scholar 

  13. Kennefick, D. Einstein versus the Physical Review. Phys. Today 58, 43–48 (2005).

    Article  Google Scholar 

  14. Einstein, A. The Meaning of Relativity 4th edn (Princeton University Press, Princeton, 1953).

    MATH  Google Scholar 

  15. Rosen, N. Plane polarised waves in the general theory of relativity. Phys. Z. Sowjetunion 12, 366–372 (1937).

    MATH  Google Scholar 

  16. Infeld, L. Equations of motion and gravitational radiation. Ann. Phys. New York 6, 341–367 (1959).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  17. Bondi, H. Plane gravitational waves in general relativity. Nature 179, 1072–1073 (1957).

    Article  MATH  ADS  Google Scholar 

  18. DeWitt-Morette, C. & Rickles, D. (eds) The Role of Gravitation in Physics: Report from the 1957 Chapel Hill Conference (Edition Open Access, Berlin, 2011).

    Google Scholar 

  19. McVittie, G. C. Gravitational waves and one-dimensional Einsteinian gas-dynamics. J. Ration. Mech. Anal. 4, 201–220 (1955).

    MathSciNet  MATH  Google Scholar 

  20. Taub, A. H. Empty space–times admitting a three parameter group of motions. Ann. Math. 58, 472–490 (1951).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  21. Will, C. M. The renaissance of general relativity. In The New Physics (ed. Davies, P.) 7–33 (Cambridge University Press, 1989).

  22. Eisenstaedt, J. La relativité générale à l’étiage: 1925–1955. Arch. Hist. Exact Sci. 35, 115–185 (1986).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  23. Eisenstaedt, J. The low water mark of general relativity, 1925–1955. In Einstein and the History of General Relativity (eds Howard, D. & Stachel, J.) 1–277 (Birkhäuser, 1989).

  24. Goenner, H. A golden age of general relativity? Some remarks on the history of general relativity. Gen. Relat. Gravit. 49, 42 (2017).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  25. Thorne, K. S. Black Holes and Time Warps: Einstein’s Outrageous Legacy (W. W. Norton, New York, 1994).

    MATH  Google Scholar 

  26. Kaiser, D. I. Making Theory: I. Producing Physics and Physicists in Postwar America. II. Post-inflation Reheating in an Expanding Universe PhD Thesis, Harvard Univ. (2000).

  27. Blum, A., Giulini, D., Lalli, R. & Renn, J. Editorial introduction to the special issue “The Renaissance of Einstein’s Theory of Gravitation”. Eur. Phys. J. H 42, 95–105 (2017).

    Article  Google Scholar 

  28. Kaiser, D. & Rickles, D. The price of gravity: Private patronage and the transformation of gravitational physics after World War II. Hist. Stud. Nat. Sci. 48, 338–379 (2018).

    Article  Google Scholar 

  29. Blum, A., Lalli, R. & Renn, J. The reinvention of general relativity: A historiographical framework for assessing one hundred years of curved space–time. Isis 106, 598–620 (2015).

    Article  MathSciNet  Google Scholar 

  30. Blum, A. S., Lalli, R. & Renn, J. The renaissance of general relativity: How and why it happened. Ann. Phys. 528, 344–349 (2016).

    Article  MathSciNet  Google Scholar 

  31. Kennefick, D. Not only because of theory: Dyson, Eddington, and the competing myths of the 1919 Eclipse Expedition. In Einstein and the Changing Worldviews of Physics (eds Lehner, C., Renn, J. & Schemmel, M.) 201–232 (Birkhäuser, Boston, 2012).

  32. Blum, A., Gavroglu, K., Joas, C. & Renn, J. Shifting Paradigms: Thomas. S. Kuhn and the History of Science (Edition Open Access, 2016).

  33. Kuhn, T. S. The Road Since Structure (eds Conant, J. & Haugelan, J.) (Univ. Chicago Press, Chicago, 2000).

  34. Kuhn, T. S. The Structure of Scientific Revolutions. 10–11 (Univ. Chicago Press, Chicago, 1970).

  35. Gutfreund, H. & Renn, J. The Formative Years of Relativity: The History and Meaning of Einstein’s Princeton Lectures (Princeton Univ. Press, Princeton, 2017).

    Book  MATH  Google Scholar 

  36. Goldstein, C. & Ritter J. The varieties of unities: Sounding unified theories 1920–1930. In Revisiting the Foundations of Relativistic Physics: Festschrift in Honor of John Stachel (eds Ashtekar, A. et al.) 93–149 (Springer Netherlands, Dordrecht, 2003).

  37. Goenner, H. F. M. On the history of unified field theories. Living Rev. Relativ. 7, 2 (2004).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  38. Oppenheimer, J. R. & Volkoff, G. M. On massive neutron cores. Phys. Rev. 55, 374–381 (1939).

    Article  MATH  ADS  Google Scholar 

  39. Oppenheimer, J. R. & Snyder, H. On continued gravitational contraction. Phys. Rev. 56, 455–459 (1939).

    Article  MATH  ADS  Google Scholar 

  40. Ortega-Rodríguez, M. et al. The early scientific contributions of J. Robert Oppenheimer: Why did the scientific community miss the black hole opportunity? Phys. Perspect. 19, 60–75 (2017).

    Article  ADS  Google Scholar 

  41. Brinkmann, H. W. Einstein spaces which are mapped conformally on each other. Math. Ann. 94, 119–145 (1925).

    Article  MathSciNet  MATH  Google Scholar 

  42. Beck, G. Zur theorie binärer gravitationsfelder. Z. Phys. A 33, 713–728 (1925).

    Article  MATH  Google Scholar 

  43. Baldwin, O. R. & Jeffery, G. B. The relativity theory of plane waves. Proc. R. Soc. Lond. A 111, 95–104 (1926).

    Article  MATH  ADS  Google Scholar 

  44. Kaiser, D. Booms, busts, and the world of ideas: Enrollment pressures and the challenge of specialization. Osiris 27, 276–302 (2012).

    Article  Google Scholar 

  45. Kaiser, D. Drawing Theories Apart: The Dispersion of Feynman Diagrams in Postwar Physics (Univ. Chicago Press, Chicago, 2005).

    Book  MATH  Google Scholar 

  46. Mercier, A. & Kervaire, M. Fünfzig Jahre Relativitätstheorie, Verhandlungen — Cinquantenaire de la Théorie de la Relativité, Actes — Jubilee of Relativity Theory, Proceedings (eds Mercier. A. & Kervaire, M.) (Birkhäuser, 1956).

  47. Lalli, R. Building the General Relativity and Gravitation Community During the Cold War (Springer, Berlin,2017).

  48. Bettencourt, L. M. A., Kaiser, D. I., Kaur, J., Castillo-Chávez, C. & Wojick, D. E. Population modeling of the emergence and development of scientific fields. Scientometrics 75, 495–518 (2008).

    Article  Google Scholar 

  49. Pauli, W. 1956. Schlußwort den Präsidenten der Konferenz. In Fünfzig Jahre Relativitätstheorie, Verhandlungen — Cinquantenaire de la Théorie de la Relativité, Actes — Jubilee of Relativity Theory, Proceedings (eds Mercier. A. & Kervaire, M.) 261–267 (Birkhäuser, 1956).

  50. Bergmann, P. G. Fifty years of relativity. Science 123, 486–494 (1956).

    Article  MathSciNet  ADS  Google Scholar 

  51. John Archibald Wheeler Papers Box 182, Folder ‘Fields and Particles’ (American Philosophical Society, 1954).

  52. Rosen, N. Gravitational waves. In Fünfzig Jahre Relativitätstheorie, Verhandlungen — Cinquantenaire de la Théorie de la Relativité, Actes — Jubilee of Relativity Theory, Proceedings (eds Mercier. A. & Kervaire, M.) 171–175 (Birkhäuser, 1956).

  53. Pauli to Fierz, 21 February 1956. in Wolfgang Pauli — Scientific Correspondence with Bohr, Einstein, Heisenberg, a.o., Volume IV, Part III: 1955–1956 (ed. von Meyenn, K.) 492–495 (Springer, Berlin, 2001).

  54. Fierz to Pauli, 24 September 1954. in Wolfgang Pauli — Scientific Correspondence with Bohr, Einstein, Heisenberg, a.o., Volume IV, Part II: 1953–1954 (ed. von Meyenn, K.) 762–763 (Springer, Berlin, 1999).

  55. Fierz to Pauli, 29 September 1954. in Wolfgang Pauli — Scientific Correspondence with Bohr, Einstein, Heisenberg, a.o., Volume IV, Part II: 1953–1954 (ed. von Meyenn, K.) 770–771 (Springer, Berlin, 1999).

  56. Bondi, H. Science, Churchill, and Me: The Autobiography of Hermann Bondi, Master of Churchill College, Cambridge 79 (Pergamon, Oxford, 1990).

  57. Interview with Felix Pirani by Dean Rickles, 23 June 2011 (Niels Bohr Library & Archives, American Institute of Physics, 2011); https://go.nature.com/2juxgje

  58. Pirani, F. A. E. & Schild, A. On the quantization of Einstein’s gravitational field equations. Phys. Rev. 79, 986–991 (1950).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  59. Synge, J. L. Relativity: The Special Theory (North-Holland, Amsterdam, 1956).

    MATH  Google Scholar 

  60. Alfred Schild Papers 1915–1982 Box 86–27/1, Pirani to Schild undated letter (Briscoe Center for American History, 1956).

  61. Rosen, N. Energy and momentum of cylindrical gravitational waves. Phys. Rev. 110, 291–292 (1958).

    Article  ADS  Google Scholar 

  62. Schilling, G. Ripples in Spacetime: Einstein, Gravitational Waves, and the Future of Astronomy (Harvard University Press, Cambridge, 2017).

    Google Scholar 

  63. Pirani, F. A. E. Invariant formulation of gravitational radiation theory. Phys. Rev. 105, 1089–1099 (1957).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  64. Petrov, A. Z. Classification of spaces defining gravitational fields. Proc. Kazan Univ. Phys. Math. Ser. 114, 55–69 (1954).

    MathSciNet  Google Scholar 

  65. Pirani, F. A. E. On the physical significance of the Riemann tensor. Acta Phys. Pol. 15, 389–405 (1956).

    MathSciNet  MATH  ADS  Google Scholar 

  66. Synge, J. L. On the deviation of geodesics and null-geodesics, particularly in relation to the properties of spaces of constant curvature and indefinite line-element. Ann. Math. 35, 705–713 (1934).

    Article  MathSciNet  MATH  Google Scholar 

  67. Pirani, F. A. E. Measurement of classical gravitational fields. In The Role of Gravitation in Physics: Report from the 1957 Chapel Hill Conference (eds DeWitt-Morette, C. & Rickles, D.) 141–142 (Edition Open Access, 2011).

  68. Bondi, H. Plane gravitational waves in general relativity. Nature 179, 1072–1073 (1957).

    Article  MATH  ADS  Google Scholar 

  69. Saulson, P. R. Josh Goldberg and the physical reality of gravitational waves. Gen. Relat. Gravit. 43, 3289–3299 (2011).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  70. Bondi, H., Pirani, F. A. E. & Robinson, I. Gravitational waves in general relativity. III. Exact plane waves. Proc. R. Soc. Lon. Ser. A 251, 519–533 (1959).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  71. Trautman, A. Boundary conditions at infinity for physical theories. Bull. Acad. Polon. Sci. 403–406 (2016); available at https://arxiv.org/abs/1604.03144

  72. Trautman, A. Radiation and boundary conditions in the theory of gravitation. Bull. Acad. Polon. Sci. 407–412 (1958); available at https://arxiv.org/abs/1604.03145

  73. Trautman, A. Lectures on general relativity. Gen. Relat. Gravit. 34, 721–762 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  74. Hill, C. D. & Nurowski, P. How the green light was given for gravitational wave search. Not. Am. Math. Soc. 64, 686–692 (2017).

    MathSciNet  MATH  Google Scholar 

  75. Arnowitt, R., Deser, S. & Misner, C. W. Energy and the criteria for radiation in general relativity. Phys. Rev. 118, 1100–1104 (1960).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  76. Bondi, H., van der Burg, M. G. J. & Metzner, A. W. K. Gravitational waves in general relativity. VII. Waves from axi-symmetric isolated systems. Proc. R. Soc. Lond. Ser. A 269, 21–52 (1962).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  77. Sachs, R. Asymptotic symmetries in gravitational theory. Phys. Rev. 128, 2851–2864 (1962).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  78. Newman, E. & Penrose, R. An approach to gravitational radiation by a method of spin coefficients. J. Math. Phys. 3, 566–578 (1962).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  79. Thorne, K. S. & Campolattaro, A. Non-radial pulsation of general-relativistic stellar models. I. Analytic analysis for L >= 2. Astrophys. J. 149, 591–611 (1967).

    Article  ADS  Google Scholar 

  80. Price, R. & Thorne, K. S. Non-radial pulsation of general-relativistic stellar models. II. Properties of the gravitational waves. Astrophys. J. 155, 163–182 (1969).

    Article  ADS  Google Scholar 

  81. Schutz, B. F. Thoughts about a conceptual framework for relativistic gravity. In Einstein and the Changing Worldviews of Physics (eds Lehner, C., Renn, J. & Schemmel, M.) 259–269 (Birkhäuser, Boston, 2012).

  82. Collins, H. Gravity’s Shadow: The Search for Gravitational Waves (Univ. Chicago Press, Chicago, 2004).

    Book  Google Scholar 

  83. Trimble, V. Wired by Weber. Eur. Phys. J. H 42, 261–291 (2017).

    Article  Google Scholar 

  84. Weber, J. On the possibility of detection and generation of gravitational waves. In Les Théories Relativistes de la Gravitation (eds Licherowicz, A. & Tonnelat M.-A.) 441–450 (Éd. du Centre National de la Recherche Scientifique, 1962).

  85. Bondi, H. On the physical characteristics of gravitational waves. In Les Théories Relativistes de la Gravitation (eds Licherowicz, A. & Tonnelat M.-A.) 129–135 (Éd. du Centre National de la Recherche Scientifique, 1962).

  86. Weber, J. Evidence for discovery of gravitational radiation. Phys. Rev. Lett. 22, 1320–1324 (1969).

    Article  ADS  Google Scholar 

  87. Schmidt, M. 3C 273: A star-like object with large red-shift. Nature 197, 1040–1040 (1963).

    Article  ADS  Google Scholar 

  88. Penzias, A. A. & Wilson, R. W. A measurement of excess antenna temperature at 4080 Mc/s. Astrophys. J. 142, 419–421 (1965).

    Article  ADS  Google Scholar 

  89. Hewish, A., Bell, S. J., Pilkington, J. D. H., Scott, P. F. & Collins, R. A. Observation of a rapidly pulsating radio source. Nature 217, 709–713 (1968).

    Article  ADS  Google Scholar 

  90. Robinson, I., Schild, A. & Schucking, E. Quasi-Stellar Sources and Gravitational Collapse, Including the Proceedings of the First Texas Symposium on Relativistic Astrophysics (Univ. Chicago Press, Chicago, 1965).

    Google Scholar 

  91. Hulse, R. A. & Taylor, J. H. Discovery of a pulsar in a binary system. Astrophys. J. Lett. 195, L51–L53 (1975).

    Article  ADS  Google Scholar 

  92. Taylor, J. H. & Weisberg, J. M. A new test of general relativity — Gravitational radiation and the binary pulsar PSR 1913+16. Astrophys. J. 253, 908–920 (1982).

    Article  ADS  Google Scholar 

  93. Kennefick, D. The binary pulsar and the quadrupole formula controversy. Eur. Phys. J. H 42, 293–310 (2017).

    Article  Google Scholar 

  94. Choptuik, M. W., Lehner, L. & Pretorius, F. Probing strong field gravity through numerical simulations. In General Relativity and Gravitation: A Centennial Perspective (eds Ashtekar, A., Berger, B. K., Isenberg, J. & MacCallum, M.) 361–411 (Cambridge Univ. Press, Cambridge, 2015).

  95. Collins, H. M. Gravity’s Kiss: The Detection of Gravitational Waves (MIT Press, Cambridge, 2017).

    MATH  Google Scholar 

  96. Lichnerowicz, A. Théories Relativistes de la Gravitation et de l’Électromagnétisme; Relativité Générale et Théories Unitaires (Masson, Paris, 1955).

    MATH  Google Scholar 

  97. Fourès-Bruhat, Y. Théorème d’existence pour certains systèmes d’équations aux dérivées partielles non linéaires. Acta Math. 88, 141–225 (1952).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  98. Arnowitt, R., Deser, S. & Misner, C. W. The dynamics of general relativity. In Gravitation: An Introduction to Current Research (ed. Witten, L.) 227–265 (John Wiley & Sons, New York, 1962).

  99. Hahn, S. G. & Lindquist, R. W. The two-body problem in geometrodynamics. Ann. Phys. 29, 304–331 (1964).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  100. Smarr, L. L. The Structure of General Relativity with a Numerical Illustration: The Collision of Two Black Holes PhD Thesis, Texas Univ. (1975).

  101. DeWitt-Morette, C. The Pursuit of Quantum Gravity: Memoirs of Bryce DeWitt from 1946 to 2004 (Springer,Berlin, 2011).

  102. Misner, C. W. John Wheeler and the recertification of general relativity as true physics. In General Relativity and John Archibald Wheeler (eds Ciufolini, I. & Matzner, R. A.) 9–27 (Springer, Berlin, 2010).

  103. Kaiser, D. Cold War Curvature: Measuring and Modeling Gravitational Systems in Postwar American Physics (2015); https://go.nature.com/2jvWhui

  104. Blum, A. & Hartz, T. The 1957 quantum gravity meeting in Copenhagen: An analysis of Bryce S. DeWitt’s report. Eur. Phys. J. H 42, 107–157 (2017).

    Article  Google Scholar 

  105. Smarr, L. et al. A Center for Scientific and Engineering Supercomputing (National Science Foundation, 1983); https://go.nature.com/2wcRMht

  106. Damerow, P., Freudenthal, G., McLaughlin, P. & Renn, J. Exploring the Limits of Preclassical Mechanics (Springer, Berlin, 1992).

  107. Lefèvre, W. Die Entstehung der biologischen Evolutionstheorie (Suhrkamp, Berlin, 2009).

    Google Scholar 

  108. Klein, U. A revolution that never happened. Stud. Hist. Philos. Sci. A 49, 80–90 (2015).

    Article  Google Scholar 

  109. Feldhay, R., Raqep, F. J. (eds). Before Copernicus: The Cultures and Contexts of Scientific Learning in the Fifteenth Century (McGill-Queen’s University Press, Kingston, 2017).

    MATH  Google Scholar 

  110. Renn, J. The Evolution of Knowledge: Toward a Historical Theory of Human Thinking (Princeton Univ. Press, Princeton, in the press).

  111. Weidmann, N. B., Kuse, D. & Gleditsch, K. S. The geography of the international system: The CShapes dataset. Int. Interact. 36, 86–106 (2010).

    Article  Google Scholar 

  112. Brandes, U. & Wagner, D. Visone — Analysis and visualization of social networks. In Graph Drawing Software (eds Jünger, M. & Mutzel P.) 321–340 (Springer, Berlin, 2004).

  113. Chen, C. Turning Points (Springer, Berlin, 2012).

  114. Waltman, L. & van Eck, N. J. A smart local moving algorithm for large-scale modularity-based community detection. Eur. Phys. J. B 86, 471 (2013).

    Article  ADS  Google Scholar 

  115. Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003).

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to D. Wintergrün for support in the network analyses and visualizations and F. Kräutli for the visual representation of the research centres.

Author information

Authors and Affiliations

Authors

Contributions

A.B., R.L. and J.R. elaborated the historical narrative and wrote the paper. R.L. provided the network analysis.

Corresponding author

Correspondence to Roberto Lalli.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blum, A., Lalli, R. & Renn, J. Gravitational waves and the long relativity revolution. Nat Astron 2, 534–543 (2018). https://doi.org/10.1038/s41550-018-0472-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-018-0472-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing