Abstract

Red supergiants have been confirmed as the progenitor stars of the majority of hydrogen-rich type II supernovae1. However, while such stars are observed with masses >25 M (ref. 2), detections of >18 M progenitors remain elusive1. Red supergiants are also expected to form at all metallicities, but discoveries of explosions from low-metallicity progenitors are scarce. Here, we report observations of the type II supernova, SN 2015bs, for which we infer a progenitor metallicity of ≤0.1 Z from comparison to photospheric-phase spectral models3, and a zero-age main-sequence mass of 17–25 M through comparison to nebular-phase spectral models4,5. SN 2015bs displays a normal ‘plateau’ light-curve morphology, and typical spectral properties, implying a red supergiant progenitor. This is the first example of such a high-mass progenitor for a ‘normal’ type II supernova, suggesting a link between high-mass red supergiant explosions and low-metallicity progenitors.

  • Subscribe to Nature Astronomy for full access:

    $99

    Subscribe

Additional access options:

Already a subscriber?  Log in  now or  Register  for online access.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims inpublished maps and institutional affiliations.

References

  1. 1.

    Smartt, S. J. Observational constraints on the progenitors of core-collapse supernovae: the case for missing high-mass stars. Pub. Astro. Soc. Aust. 32, 16–38 (2015).

  2. 2.

    Levesque, E. M. et al. The effective temperature scale of galactic red supergiants: cool, but not as cool as we thought. Astrophys. J. 628, 973–985 (2005).

  3. 3.

    Dessart, L. et al. Type II-Plateau supernova radiation: dependences on progenitor and explosion properties. Mon. Not. R. Astron. Soc. 433, 1745–1763 (2013).

  4. 4.

    Dessart, L. et al. Determining the main-sequence mass of Type II supernova progenitors. Mon. Not. R. Astron. Soc. 408, 827–840 (2010).

  5. 5.

    Jerkstrand, A. et al. The progenitor mass of the Type IIP supernova SN 2004et from late-time spectral modeling. Astron. Astrophys. 546, 28–49 (2012).

  6. 6.

    Li, W. et al. Nearby supernova rates from the Lick Observatory Supernova Search – II. The observed luminosity functions and fractions of supernovae in a complete sample. Mon. Not. R. Astron. Soc. 412, 1441–1472 (2011).

  7. 7.

    Falk, S. W. & Arnett, W. D. Radiation dynamics, envelope ejection, and supernova light curves. Astron. Astrophys. Suppl. S 33, 515–562 (1977).

  8. 8.

    Smartt, S. J. et al. The death of massive stars – I. Observational constraints on the progenitors of Type II-P supernovae. Mon. Not. R. Astron. Soc. 395, 1409–1437 (2009).

  9. 9.

    Woosley, S. E. et al. The evolution and explosion of massive stars. Rev. Mod. Phys. 74, 1015–1071 (2002).

  10. 10.

    Hirschi, R., Meynet, G. & Maeder, A. Stellar evolution with rotation. XII. Pre-supernova Models Astron. Astrophys. 425, 649–670 (2004).

  11. 11.

    Chieffi, A. & Limongi, M. Pre-supernova evolution of rotating solar metallicity stars in the mass range 13–120 M and their explosive yields. Astrophys. J. 764, 21–57 (2013).

  12. 12.

    Jerkstrand, A. et al. The nebular spectra of SN 2012aw and constraints on stellar nucleosynthesis from oxygen emission lines. Mon. Not. R. Astron. Soc. 439, 3694–3703 (2014).

  13. 13.

    Jerkstrand, A. et al. Supersolar Ni/Fe production in the Type IIP SN 2012ec. Mon. Not. R. Astron. Soc. 448, 2482–2494 (2015).

  14. 14.

    Silverman, J. M. et al. After the fall: late-time spectroscopy of Type IIP supernovae. Mon. Not. R. Astron. Soc. 467, 369–411 (2017).

  15. 15.

    Walmswell, J. J. & Eldridge, J. J. Circumstellar dust as a solution to the red supergiant supernova progenitor problem. Mon. Not. R. Astron. Soc. 419, 2054–2062 (2012).

  16. 16.

    Davies, B. & Beasor, E. R. The initial masses of the red supergiant progenitors to Type II supernovae. Mon. Not. R. Astron. Soc. 474, 2116–2128 (2018).

  17. 17.

    Kochanek, C. S. Failed supernovae explain the compact remnant mass function. Astrophys. J. 785, 28–34 (2014).

  18. 18.

    Adams, S. M. et al. The search for failed supernovae with the Large Binocular Telescope: confirmation of a disappearing star. Mon. Not. R. Astron. Soc. 468, 4968–4981 (2017).

  19. 19.

    Arcavi, I. et al. Core-collapse supernovae from the Palomar Transient Factory: indications for a different population in dwarf galaxies. Astrophys. J. 721, 777–784 (2010).

  20. 20.

    Stoll, R. et al. Probing the low-redshift star formation rate as a function of metallicity through the local environments of Type II supernovae. Mon. Not. R. Astron. Soc. 773, 12–31 (2013).

  21. 21.

    Dessart, L. et al. Type II Plateau supernovae as metallicity probes of the Universe. Mon. Not. R. Astron. Soc. 440, 1856–1864 (2014).

  22. 22.

    Anderson, J. P. et al. Type II supernovae as probes of environment metallicity: observations of host H II regions. Astron. Astrophys. 589, 110–130 (2016).

  23. 23.

    Smartt, S. J. et al. PESSTO: survey description and products from the first data release by the Public ESO Spectroscopic Survey of Transient Objects. Astron. Astrophys. 579, 40–65 (2015).

  24. 24.

    Drake, A. J. et al. First results from the Catalina Real-Time Transient Survey. Astrophys. J. 696, 870–884 (2009).

  25. 25.

    Huber, M. et al. The Pan-STARRS Survey for Transients (PSST) – first announcement and public release. ATEL 7153, 1 (2015).

  26. 26.

    Taddia, F. et al. Metallicity from Type II supernovae from the (i)PTF. Astron. Astrophys. 587, 7–13 (2016).

  27. 27.

    Tremonti, C. A. et al. The origin of the mass-metallicity relation: insights from 53,000 star-forming galaxies in the Sloan Digital Sky Survey. Astrophys. J. 613, 898–913 (2004).

  28. 28.

    Woosley, S. E. & Weaver, T. A. The evolution and explosion of massive stars. II. Explosive hydrodynamics and nucleosynthesis. Astrophys. J. Suppl. S 101, 181 (1995).

  29. 29.

    Arnett, W. D. & Meakin, C. Toward realistic progenitors of core-collapse supernovae. Astrophys. J. 733, 78 (2011).

  30. 30.

    Fransson, C. & Chevalier, R. A. Late emission from SN 1987A. Astrophys. J. 322, L15–L20 (1987).

  31. 31.

    Maguire, K. et al. Constraining the physical properties of Type II-Plateau supernovae using nebular phase spectra. Mon. Not. R. Astron. Soc. 420, 3451–3468 (2012).

  32. 32.

    O’Connor, E. & Ott, C. D. Black hole formation in failing core-collapse supernovae. Astrophys. J. 730, 70–90 (2011).

  33. 33.

    Mueller, B. et al. New two-dimensional models of supernova explosions by the neutrino-heating mechanism: evidence for different instability regimes in collapsing stellar cores. Astrophys. J. 761, 72–84 (2012).

  34. 34.

    Bacon, R. et al. MUSE commissioning. Msngr 157, 13–16 (2014).

  35. 35.

    Buzzoni, B. et al. The ESO Faint Object Spectrograph and Camera (EFOSC). Msngr 38, 9–13 (1984).

  36. 36.

    Walton, N. et al. PESSTO spectroscopic classification of optical transients. ATEL 6516, 1 (2014).

  37. 37.

    Blondin, S. & Tonry, J. L. Determining the type, redshift, and age of a supernova spectrum. Astrophys. J. 666, 1024–1047 (2007).

  38. 38.

    Dessart, L. & Hillier, D.J. Non-LTE time-dependent spectroscopic modelling of Type II-plateau supernovae from the photospheric to the nebular phase: case study for 15 and 25 M progenitor stars. Mon. Not. R. Astron. Soc. 410, 1739–1760 (2011).

  39. 39.

    Schlafly, E. F. & Finkbeiner, D. P. Measuring reddening with Sloan Digital Sky Survey stellar spectra and recalibrating SFD. Astrophys. J. 737, 103–126 (2011).

  40. 40.

    Fitzpatrick, E. L. Correcting for the effects of interstellar extinction. Pub. Astro. Soc. Aust. 111, 63–75 (1999).

  41. 41.

    Hamuy, M. et al. The Carnegie Supernova Project: The Low-Redshift Survey. Pub. Astro. Soc. Aust. 118, 2–20 (2006).

  42. 42.

    Landolt, A. U. UBVRI photometric standard stars in the magnitude range 11.5-16.0 around the celestial equator. Astron. J 104, 340–371 (1992).

  43. 43.

    Smith, J. et al. The u’g’r’i’z’ Standard-Star System. Astron. J. 123, 2121–2144 (2002).

  44. 44.

    Chambers, K. C. et al. The Pan-STARRS1 Surveys. Preprint at http://arXiv.org/abs/1612.05560 (2016).

  45. 45.

    Waters, C. Z. et al. Pan-STARRS pixel processing: detrending, warping, stacking. Preprint at http://arXiv.org/abs/1612.05245 (2016).

  46. 46.

    Magnier, E. A. et al. Pan-STARRS photometric and astrometric calibration. Preprint at http://arXiv.org/abs/1612.05242 (2016).

  47. 47.

    Smartt, S. J. et al. Pan-STARRS and PESSTO search for an optical counterpart to the LIGO gravitational-wave source GW150914. Mon. Not. R. Astron. Soc. 462, 4094–4116 (2016).

  48. 48.

    Tonry, J. L. et al. The Pan-STARRS1 photometric system. Astrophys. J. 750, 99–103 (2012).

  49. 49.

    Brown, T. M. et al. Las Cumbres Observatory Global Telescope Network. Pub. Astro. Soc. Aust. 125, 1031–1055 (2013).

  50. 50.

    Valenti, S. et al. The first month of evolution of the slow-rising Type IIP SN 2013ej in M74. Mon. Not. R. Astron. Soc. 438, L101–L105 (2014).

  51. 51.

    Weilbacher, P. M. et al. The MUSE data reduction pipeline: status after preliminary acceptance Europe. ASPC 485, 451 (2014).

  52. 52.

    Ott, T. QFitsView: FITS file viewer. ASCL 10019 (2012); http://adsabs.harvard.edu/abs/2012ascl.soft10019O

  53. 53.

    Yuan, F. et al. 450 days of Type II SN 2013ej in optical and near-infrared. Mon. Not. R. Astron. Soc. 461, 2003–2018 (2016).

  54. 54.

    Terreran, G. et al. The multi-faceted Type II-L supernova 2014G from pre-maximum to nebular phase. Mon. Not. R. Astron. Soc. 462, 137–157 (2016).

  55. 55.

    Hamuy, M. Observed and physical properties of core-collapse supernovae. Astrophys. J. 582, 905–914 (2003).

  56. 56.

    Phillips, M. M. et al. An optical spectrophotometric atlas of supernova 1987A in the LMC. II — CCD observations from day 198 to 805. Astron. J. 99, 1133–1145 (1990).

  57. 57.

    Arnett, D. Supernovae and Nucleosynthesis (Princeton Univ. Press, 1996).

  58. 58.

    Valenti, S. et al. The diversity of Type II supernova versus the similarity in their progenitors. Mon. Not. R. Astron. Soc. 459, 3939–3962 (2016).

Download references

Acknowledgements

T.K. and T.-W.C. acknowledge support through the Sofja Kovalevskaja Award provided to P. Schady from the Alexander von Humboldt Foundation of Germany. A.J. acknowledges funding by the European Union's Framework Programme for Research and Innovation Horizon 2020 under Marie Sklodowska-Curie grant agreement no. 702538. S.J.S. acknowledges funding from the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007–2013)/ERC Grant agreement no. [291222] and Science and Technology Facilities Council (STFC) grants ST/I001123/1 and ST/L000709/1. M.D.S., C.C. and E.Y.H. gratefully acknowledge the generous support provided by the Danish Agency for Science and Technology and Innovation realized through a Sapere Aude Level 2 grant. M.D.S. acknowledges funding by a research grant (13261) from the VILLUM FONDEN. Support for S.G.-G. is provided by the Ministry of Economy, Development, and Tourism’s Millennium Science Initiative through grant IC120009 awarded to The Millennium Institute of Astrophysics (MAS), and CONICYT through FONDECYT grant 3140566. Support for C.A. is provided by the Ministry of Economy, Development, and Tourism’s Millennium Science Initiative through grant IC120009 awarded to The Millennium Institute of Astrophysics (MAS), and CONICYT through FONDECYT grant 3150463. M.F. acknowledges the support of a Royal Society–Science Foundation Ireland University Research Fellowship. K.M. acknowledges support from the STFC through an Ernest Rutherford Fellowship. M.S. acknowledges support from EU/FP7-ERC grant 615929. The work of the CSP-II has been supported by the National Science Foundation under grants AST0306969, AST0607438, AST1008343 and AST1613426. This work is based (in part) on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile as part of PESSTO (the Public ESO Spectroscopic Survey for Transient Objects) ESO program 188.D-3003, 191.D-0935. This work is based (in part) on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere under ESO programme 296.D-5003(A). This work was partly supported by the European Union FP7 programme through ERC grant number 320360. Pan-STARRS is supported by NASA grants NNX08AR22G, NNX14AM74G. PS1 surveys acknowledge the PS1SC: University of Hawaii, MPIA Heidelberg, MPE Garching, Johns Hopkins University, Durham University, University of Edinburgh, Queens University Belfast, Harvard-Smithsonian CfA, LCOGT, NCU Taiwan, STScI, University of Maryland, Eotvos Lorand University, Los Alamos National Laboratory, and NSF grant no. AST-1238877. A. Gal-Yam, M. Bersten, F. Förster, J. Hillier, F. Taddia and C. Fransson are thanked for useful discussions. This research has made use of: the NASA/IPAC Extragalactic Database (NED), which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics; iraf, which is distributed by the National Optical Astronomy Observatory, which is operated by the Association of Universities for Research in Astronomy (AURA) under cooperative agreement with the National Science Foundation; QfitsView; and the SDSS, funding for the SDSS and SDSS-II has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, the US Department of Energy, the National Aeronautics and Space Administration, the Japanese Monbukagakusho, the Max Planck Society and the Higher Education Funding Council for England. The SDSS Web Site is http://www.sdss.org/.

Author information

Affiliations

  1. European Southern Observatory, Santiago, Chile

    • J. P. Anderson
  2. Unidad Mixta Internacional Franco-Chilena de Astronomía (CNRS UMI 3386), Departamento de Astronomía, Universidad de Chile, Santiago, Chile

    • L. Dessart
  3. School of Physics and Astronomy, University of Southampton, Southampton, UK

    • C. P. Gutiérrez
    • , C. Inserra
    •  & M. Sullivan
  4. Max-Planck-Institut für extraterrestrische Physik, Garching, Germany

    • T. Krühler
    •  & T. -W. Chen
  5. PITT PACC, Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA, USA

    • L. Galbany
  6. Astrophysics Research Centre, School of Mathematics and Physics, Queens University Belfast, Belfast, UK

    • A. Jerkstrand
    • , S. J. Smartt
    • , E. Kankare
    • , K. Maguire
    •  & D. R. Young
  7. Carnegie Observatories, Las Campanas Observatory, La Serena, Chile

    • C. Contreras
    • , N. Morrell
    • , M. M. Phillips
    •  & C. Gonzalez
  8. Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark

    • M. D. Stritzinger
  9. Department of Physics, Florida State University, Tallahassee, FL, USA

    • E. Y. Hsiao
    •  & S. Castellón
  10. Millennium Institute of Astrophysics, Universidad de Chile, Santiago, Chile

    • S. González-Gaitán
    •  & C. Agliozzo
  11. Center for Mathematical Modelling, University of Chile, Santiago, Chile

    • S. González-Gaitán
  12. Departamento de Ciencias Fisicas, Universidad Andres Bello, Santiago, Chile

    • C. Agliozzo
  13. Institute for Astronomy, University of Hawaii, Honolulu, HI, USA

    • K. C. Chambers
    • , H. Flewelling
    • , M. Huber
    • , E. Magnier
    •  & T. B. Lowe
  14. Las Cumbres Observatory, Goleta, CA, USA

    • G. Hosseinzadeh
  15. Department of Physics, University of California, Santa Barbara, CA, USA

    • G. Hosseinzadeh
  16. O’Brien Centre for Science, North University College Dublin, Belfield, Dublin, Ireland

    • M. Fraser
  17. Tuorla Observatory, Department of Physics and Astronomy, University of Turku, Piikkiö, Finland

    • S. Mattila
  18. Department of Astronomy and the Oskar Klein Centre, Stockholm University, AlbaNova, Stockholm, Sweden

    • J. Sollerman
  19. Department of Physics, University of California, Davis , Davis, CA, USA

    • S. Valenti

Authors

  1. Search for J. P. Anderson in:

  2. Search for L. Dessart in:

  3. Search for C. P. Gutiérrez in:

  4. Search for T. Krühler in:

  5. Search for L. Galbany in:

  6. Search for A. Jerkstrand in:

  7. Search for S. J. Smartt in:

  8. Search for C. Contreras in:

  9. Search for N. Morrell in:

  10. Search for M. M. Phillips in:

  11. Search for M. D. Stritzinger in:

  12. Search for E. Y. Hsiao in:

  13. Search for S. González-Gaitán in:

  14. Search for C. Agliozzo in:

  15. Search for S. Castellón in:

  16. Search for K. C. Chambers in:

  17. Search for T. -W. Chen in:

  18. Search for H. Flewelling in:

  19. Search for C. Gonzalez in:

  20. Search for G. Hosseinzadeh in:

  21. Search for M. Huber in:

  22. Search for M. Fraser in:

  23. Search for C. Inserra in:

  24. Search for E. Kankare in:

  25. Search for S. Mattila in:

  26. Search for E. Magnier in:

  27. Search for K. Maguire in:

  28. Search for T. B. Lowe in:

  29. Search for J. Sollerman in:

  30. Search for M. Sullivan in:

  31. Search for D. R. Young in:

  32. Search for S. Valenti in:

Contributions

J.P.A. performed the analysis and wrote the manuscript. L.D. helped write the manuscript and provided comments on the physical interpretation. C.P.G. provided specific measurements of pEWs of spectral lines and was part of the overall project to obtain these data. T.K. reduced the MUSE dataset. L.G. helped obtain the MUSE dataset. A.J. provided comments on the physical interpretation of the nebular spectral comparisons. S.J.S. is principal investigator of the PESSTO project, through which spectra were obtained. C.C. provided calibrated photometry from the CSP-II. M.P.P. is principal investigator of the CSP that provided photometry. N.M., M.S., E.Y.H, S.C. and C.G. are co-investigators on the CSP, which provided photometric data. S.G.-G. analysed the light-curve data of SN 2015bs. C.A., T.W.-C., M.F., C.I., E.K., S.M., K.M., J.S., M.S., D.R.Y. and S.V. were part of the PESSTO project, through which spectra were obtained. K.C.C., H.F., M.H., E.M. and T.B.L. provided photometry through the Pan-STARRS project. G.H. provided a spectrum from LCO.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to J. P. Anderson.

Supplementary information

  1. Supplementary Information

    Supplementary Figures 1–12, Supplementary Tables 1–5.