Letter | Published:

The mysterious age invariance of the planetary nebula luminosity function bright cut-off

Nature Astronomyvolume 2pages580584 (2018) | Download Citation


Planetary nebulae mark the end of the active life of 90% of all stars. They trace the transition from a red giant to a degenerate white dwarf. Stellar models1,2 predicted that only stars above approximately twice the solar mass could form a bright nebula. But the ubiquitous presence of bright planetary nebulae in old stellar populations, such as elliptical galaxies, contradicts this: such high-mass stars are not present in old systems. The planetary nebula luminosity function, and especially its bright cut-off, is almost invariant between young spiral galaxies, with high-mass stars, and old elliptical galaxies, with only low-mass stars. Here, we show that new evolutionary tracks of low-mass stars are capable of explaining in a simple manner this decades-old mystery. The agreement between the observed luminosity function and computed stellar evolution validates the latest theoretical modelling. With these models, the planetary nebula luminosity function provides a powerful diagnostic to derive star formation histories of intermediate-age stars. The new models predict that the Sun at the end of its life will also form a planetary nebula, but it will be faint.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Vassiliadis, E. & Wood, P. R. Post-asymptotic giant branch evolution of low- to intermediate-mass stars. Astrophys. J. Suppl. Ser. 92, 125–144 (1994).

  2. 2.

    Bloecker, T. Stellar evolution of low- and intermediate-mass stars. II. Post-AGB evolution. Astron. Astrophys. 299, 755–769 (1995).

  3. 3.

    Jacob, R., Schönberner, D. & Steffen, M. The evolution of planetary nebulae. VIII. True expansion rates and visibility times. Astron. Astrophys. 558, A78 (2013).

  4. 4.

    Jacoby, G. H., Ciardullo, R. & Ford, H. C. Planetary nebulae as distance indicators. Publ. Astron. Soc. Pac. 4, 42–56 (1988).

  5. 5.

    Ciardullo, R. The planetary nebula luminosity function at the dawn of Gaia. Astrophys. Space Sci. 341, 151–161 (2012).

  6. 6.

    Ciardullo, R. The planetary nebula luminosity function and its issues. Proc. IAU 29B, 15–19 (2016).

  7. 7.

    Jacoby, G. H. The luminosity function for planetary nebulae and the number of planetary nebulae in local group galaxies. Astrophys. J. Suppl. Ser. 42, 1–18 (1980).

  8. 8.

    Allen, C. W. Astrophysical Quantities 3rd edn (ed. Cox, A. N.) (Athlone, London, 1973).

  9. 9.

    Mendez, R. H. & Soffner, T. Improved simulations of the planetary nebula luminosity function. Astron. Astrophys. 321, 898–906 (1997).

  10. 10.

    Méndez, R. H., Teodorescu, A. M., Schönberner, D., Jacob, R. & Steffen, M. Toward better simulations of planetary nebulae luminosity functions. Astrophys. J. 681, 325–332 (2008).

  11. 11.

    Marigo, P., Girardi, L., Weiss, A., Groenewegen, M. A. T. & Chiosi, C. Evolution of planetary nebulae. II. Population effects on the bright cut-off of the PNLF. Astron. Astrophys. 423, 995–1015 (2004).

  12. 12.

    Schönberner, D., Jacob, R., Steffen, M. & Sandin, C. The evolution of planetary nebulae. IV. On the physics of the luminosity function. Astron. Astrophys. 473, 467–484 (2007).

  13. 13.

    Gesicki, K., Zijlstra, A. A., Hajduk, M. & Szyszka, C. Accelerated post-AGB evolution, initial-final mass relations, and the star-formation history of the Galactic bulge. Astron. Astrophys. 566, A48 (2014).

  14. 14.

    Miller Bertolami, M. M. New models for the evolution of post-asymptotic giant branch stars and central stars of planetary nebulae. Astron. Astrophys. 588, A25 (2016).

  15. 15.

    Gesicki, K., Acker, A. & Szczerba, R. Modelling the structure of selected planetary nebulae. Astron. Astrophys. 309, 907–916 (1996).

  16. 16.

    Heavens, A., Panter, B., Jimenez, R. & Dunlop, J. The star-formation history of the Universe from the stellar populations of nearby galaxies. Nature 428, 625–627 (2004).

  17. 17.

    McDermid, R. M. et al. The ATLAS3D Project — XXX. Star formation histories and stellar population scaling relations of early-type galaxies. Mon. Not. R. Astron. Soc. 448, 3484–3513 (2015).

  18. 18.

    Richer, M. G., McCall, M. L. & Arimoto, N. Theoretical models of the planetary nebula populations in galaxies: the ISM oxygen abundance when star formation stops. Astron. Astrophys. Suppl. Ser. 122, 215–233 (1997).

  19. 19.

    Gesicki, K., Zijlstra, A. A. & Morisset, C. 3D pyCloudy modelling of bipolar planetary nebulae: evidence for fast fading of the lobes. Astron. Astrophys. 585, A69 (2016).

  20. 20.

    Miller Bertolami, M. M. & Althaus, L. G. Full evolutionary models for PG 1159 stars. Implications for the helium-rich O(He) stars. Astron. Astrophys. 454, 845–854 (2006).

  21. 21.

    Renedo, I. et al. New cooling sequences for old white dwarfs. Astrophys. J. 717, 183–195 (2010).

  22. 22.

    Althaus, L. G., Miller Bertolami, M. M. & Córsico, A. H. New evolutionary sequences for extremely low-mass white dwarfs. Homogeneous mass and age determinations and asteroseismic prospects. Astron. Astrophys. 557, A19 (2013).

  23. 23.

    Iglesias, C. A. & Rogers, F. J. Updated opal opacities. Astrophys. J. 464, 943–953 (1996).

  24. 24.

    Cassisi, S., Potekhin, A. Y., Pietrinferni, A., Catelan, M. & Salaris, M. Updated electron-conduction opacities: the impact on low-mass stellar models. Astrophys. J. 661, 1094–1104 (2007).

  25. 25.

    Weiss, A. & Ferguson, J. W. New asymptotic giant branch models for a range of metallicities. Astron. Astrophys. 508, 1343–1358 (2009).

  26. 26.

    Ferland, G. J. et al. The 2013 release of Cloudy. Rev. Mex. Astron. Astr. 49, 137–163 (2013).

  27. 27.

    Schönberner, D., Jacob, R., Sandin, C. & Steffen, M. The evolution of planetary nebulae. VII. Modelling planetary nebulae of distant stellar systems. Astron. Astrophys. 523, A86 (2010).

  28. 28.

    Frew, D. J. & Parker, Q. A. Planetary nebulae: observational properties, mimics and diagnostics. Publ. Astron. Soc. Aust. 27, 129–148 (2010).

  29. 29.

    Ciardullo, R., Jacoby, G. H., Ford, H. C. & Neill, J. D. Planetary nebulae as standard candles. II—The calibration in M31 and its companions. Astrophys. J. 339, 53–69 (1989).

Download references


A.A.Z. and K.G. acknowledge the financial support by The University of Manchester and by Nicolaus Copernicus University. A.A.Z. is supported by the UK Science and Technology Facility Council (STFC) under grant ST/P000649/1. M.M.M.B. is partially suported by ANPCyT and CONICET through grants PICT-2 014-2708 and PIP 112-200801-00940 and also by a Return Fellowship from the Alexander von Humboldt Foundation.

Author information


  1. Centre for Astronomy, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Torun, Poland

    • K. Gesicki
  2. Jodrell Bank Centre for Astrophysics, School of Physics & Astronomy, University of Manchester, Manchester, UK

    • A. A. Zijlstra
  3. Department of Physics & Laboratory for Space Research, University of Hong Kong, Lung Fu Shan, Hong Kong

    • A. A. Zijlstra
  4. Instituto de Astrofísica de La Plata, UNLP-CONICET, La Plata, Argentina

    • M. M. Miller Bertolami


  1. Search for K. Gesicki in:

  2. Search for A. A. Zijlstra in:

  3. Search for M. M. Miller Bertolami in:


A.A.Z. and K.G. developed the concept. M.M.M.B. provided the post-AGB evolutionary sequences obtained with LPCODE and computed the supplementary data. K.G. adopted the Torun codes for the present work, performed the photoionization calculations and synthesized the PNLF. All authors participated in discussions of the results, in their presentations in figures and descriptions in manuscript and in pinpointing the conclusions.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to K. Gesicki.

Supplementary information

  1. Supplementary Information

    Supplementary Figure 1, Supplementary Text, Supplementary References

About this article

Publication history






Further reading