Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Tumbling motion of 1I/‘Oumuamua and its implications for the body’s distant past


Models of the Solar System’s evolution show that almost all the primitive material leftover from the formation of the planets was ejected to the interstellar space as a result of dynamical instabilities1. Accordingly, minor bodies should also be ejected from other planetary systems and should be abundant in the interstellar space2, giving hope for their direct detection and detailed characterization as they penetrate through the Solar System3,4. These expectations materialized on 19 October 2017 ut with the Panoramic Survey Telescope and Rapid Response System’s discovery of 1I/‘Oumuamua5. Here, we report homogeneous photometric observations of this body from Gemini North, which densely cover a total of 8.06 h over two nights. A combined ultra-deep image of 1I/‘Oumuamua shows no signs of cometary activity, confirming the results from other, less sensitive searches6,7,8,9. Our data also show an enormous range of rotational brightness variations of 2.6 ± 0.2 mag, larger than ever observed in the population of small Solar System objects, suggesting a very elongated shape of the body. Most significantly, the light curve does not repeat exactly from one rotation cycle to another and its double-peaked periodicity of 7.56 ± 0.01 h from our data is inconsistent with earlier determinations6,7,10,11,12. These are clear signs of a tumbling motion, a remarkable characteristic of 1I/‘Oumuamua’s rotation that is consistent with a collision in the distant past. Bearing marks of a violent history, this first-known interstellar visitor tells us that collisional evolution of minor body populations in other planetary systems might be common.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Deep stack of the r′-band imaging time series of 1I/‘Oumuamua.
Fig. 2: Results from the periodicity analysis of the r′-band photometric time series of 1I/‘Oumuamua.
Fig. 3: Light curve parameters of 1I/‘Oumuamua in the context of 16,213 Solar System asteroids.
Fig. 4: Results from Hapke modelling applicable to the observing circumstances of 1I/‘Oumuamua.


  1. Woolum, D. S. & Cassen, P. M. in Encyclopedia of the Solar System (eds Weissman, P. R., McFadden, L.-A. & Johnson, T. V.) 27–28 (Academic Press, San Diego, 1999).

  2. Moro-Martín, A., Turner, E. L. & Loeb, A. Will the large synoptic survey telescope detect extra-solar planetesimals entering the Solar System? Astrophys. J. 704, 733–742 (2009).

    Article  ADS  Google Scholar 

  3. Sekanina, Z. A probability of encounter with interstellar comets and the likelihood of their existence. Icarus 27, 123–133 (1976).

    Article  ADS  Google Scholar 

  4. Stern, S. A. On the number density of interstellar comets as a constraint on the formation rate of planetary systems. Publ. Astron. Soc. Pac. 102, 793–795 (1990).

    Article  ADS  Google Scholar 

  5. Williams, G. MPEC 2017-U181: Comet C/2017 U1 (PANSTARRS) (International Astronomical Union, 2017);

  6. Meech, K. J. et al. A brief visit from a red and extremely elongated interstellar asteroid. Nature 552, 378–381 (2017).

    Article  ADS  Google Scholar 

  7. Jewitt, D. et al. Interstellar interloper 1I/2017 U1: observations from the NOT and WIYN telescopes. Astrophys. J. Lett. 850, L36 (2017).

    Article  ADS  Google Scholar 

  8. Ye, Q.-Z., Zhang, Q., Kelley, M. S. P. & Brown, P. G. 1I/2017 U1 (‘Oumuamua) is hot: imaging, spectroscopy, and search of meteor activity. Astrophys. J. Lett. 851, L5 (2017).

    Article  ADS  Google Scholar 

  9. Knight, M. M. et al. On the rotation period and shape of the hyperbolic asteroid 1I/‘Oumuamua (2017 U1) from its lightcurve. Astrophys. J. Lett. 851, L31 (2017).

    Article  ADS  Google Scholar 

  10. Bolin, B. T. et al. APO time-resolved color photometry of highly elongated interstellar object 1I/‘Oumuamua. Astrophys. J. Lett. 852, L2 (2018).

    Article  ADS  Google Scholar 

  11. Bannister, M. T. et al. Col-OSSOS: colors of the interstellar planetesimal 1I/‘Oumuamua. Astrophys. J. Lett. 851, L38 (2017).

    Article  ADS  Google Scholar 

  12. Feng, F. & Jones, H. R. A. ‘Oumuamua as a messenger from the local association. Astrophys. J. Lett. 852, L27 (2018).

    Article  ADS  Google Scholar 

  13. Fukugita, M. et al. The Sloan Digital Sky Survey photometric system. Astron. J. 111, 1748–1756 (1996).

    Article  ADS  Google Scholar 

  14. Stellingwerf, R. F. Period determination using phase dispersion minimization. Astrophys. J. 224, 953–960 (1978).

    Article  ADS  Google Scholar 

  15. Drahus, M. & Waniak, W. Non-constant rotation period of comet C/2001 K5 (LINEAR). Icarus 185, 544–557 (2006).

    Article  ADS  Google Scholar 

  16. Fitzsimmons, A. et al. Spectroscopy and thermal modelling of the first interstellar object 1I/2017 U1 ‘Oumuamua. Nat. Astron. 2, 133–137 (2018).

    Article  ADS  Google Scholar 

  17. Fraser, W. C. et al. The tumbling rotational state of 1I/‘Oumuamua. Nat. Astron. (2018).

  18. Pravec, P. & Harris, A. W. Fast and slow rotation of asteroids. Icarus 148, 12–20 (2000).

    Article  ADS  Google Scholar 

  19. Warner, B. D., Harris, A. W. & Pravec, P. The asteroid Lightcurve Database. Icarus 202, 134–146 (2009).

    Article  ADS  Google Scholar 

  20. Hapke, B. Theory of Reflectance and Emittance Spectroscopy (Cambridge University Press, New York, 2012).

  21. Hilton, J. L. in Asteroids III (eds Bottke, W. F. et al.) 103–112 (University of Arizona Press, Tucson, 2002).

  22. Pravec, P. et al. Tumbling asteroids. Icarus 173, 108–131 (2005).

    Article  ADS  Google Scholar 

  23. Samarasinha, N. H. Rotational excitation and damping as probes of interior structures of asteroids and comets. Meteorit. Planet. Sci. 43, 1063–1073 (2008).

    Article  ADS  Google Scholar 

  24. Belton, M. J. S., Julian, W. H., Anderson, A. J. & Mueller, B. E. A. The spin state and homogeneity of comet Halley’s nucleus. Icarus 93, 183–193 (1991).

    Article  ADS  Google Scholar 

  25. Belton, M. J. S. et al. The complex spin state of 103P/Hartley 2: kinematics and orientation in space. Icarus 222, 595–609 (2013).

    Article  ADS  Google Scholar 

  26. Hudson, R. S. & Ostro, S. J. Shape and non-principal axis spin state of asteroid 4179 Toutatis. Science 270, 84–86 (1995).

    Article  ADS  Google Scholar 

  27. Samarasinha, N. H., Mueller, B. E. A., Belton, M. J. S. & Jorda, L. in Comets II (eds Festou, M., Keller, H. U. & Weaver, H. A.) 281–299 (University of Arizona Press, Tucson, 2004).

  28. Pravec, P. et al. The tumbling spin state of (99942) Apophis. Icarus 233, 48–60 (2014).

    Article  ADS  Google Scholar 

  29. Bottke, W. F. et al. Linking the collisional history of the main asteroid belt to its dynamical excitation and depletion. Icarus 179, 63–94 (2005).

    Article  ADS  Google Scholar 

  30. Kim, Y., Ishiguro, M., Michikami, T. & Nakamura, A. M. Anisotropic ejection from active asteroid P/2010 A2: an implication of impact shattering on an asteroid. Astron. J. 153, 228 (2017).

    Article  ADS  Google Scholar 

  31. Hook, I. M. et al. The Gemini-North Multi-Object Spectrograph: performance in imaging, long-slit, and multi-object spectroscopic modes. Publ. Astron. Soc. Pac. 116, 425–440 (2004).

    Article  ADS  Google Scholar 

  32. Drahus, M. et al. Fast rotation and trailing fragments of the active asteroid P/2012 F5 (Gibbs). Astrophys. J. Lett. 802, L8 (2015).

    Article  ADS  Google Scholar 

  33. Laher, R. R. et al. Aperture photometry tool. Publ. Astron. Soc. Pac. 124, 737–763 (2012).

    Article  ADS  Google Scholar 

  34. Eisenstein, D. J. et al. SDSS-III: massive spectroscopic surveys of the distant Universe, the Milky Way, and extra-solar planetary systems. Astron. J. 142, 72 (2011).

    Article  ADS  Google Scholar 

  35. Bowell, E. et al. in Asteroids II (eds Binzel, R. & Gehrels, T.) 524–556 (University of Arizona Press, Tucson, 1989).

  36. Luu, J. & Jewitt, D. On the relative numbers of C types and S types among near-earth asteroids. Astron. J. 98, 1905–1911 (1989).

    Article  ADS  Google Scholar 

  37. Masiero, J. Palomar optical spectrum of hyperbolic near-earth object A/2017 U1. Preprint at (2017).

  38. Helfenstein, P. & Veverka, J. in Asteroids II (eds Binzel, R. & Gehrels, T.) 557–593 (University of Arizona Press, Tucson, 1989).

  39. Davidsson, B. J. R. Tidal splitting and rotational breakup of solid biaxial ellipsoids. Icarus 149, 375–383 (2001).

    Article  ADS  Google Scholar 

  40. Pravec, P., Harris, A. W. & Michalowski, T. in Asteroids III (eds Bottke, W. F. et al.) 113–122 (University of Arizona Press, Tucson, 2002).

  41. Sharma, I., Burns, J. A. & Hui, C.-Y. Nutational damping times in solids of revolution. Mon. Not. R. Astron. Soc. 359, 79–92 (2005).

    Article  ADS  Google Scholar 

  42. Breiter, S., Rożek, A. & Vokrouhlický, D. Stress field and spin axis relaxation for inelastic triaxial ellipsoids. Mon. Not. R. Astron. Soc. 427, 755–769 (2012).

Download references


The findings of this paper are based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy , Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the National Research Council (Canada), CONICYT (Chile), Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina), and Ministério da Ciência, Tecnologia e Inovação (Brazil). We are indebted to the director of the Gemini Observatory, L. Ferrarese, for rapid evaluation and approval of our director’s discretionary time request. We also thank our telescope operator, A. Smith, for excellent work including real-time brightness monitoring of the target, and other Gemini Observatory staff members for vital contributions to making the GMOS-N observations possible. Special thanks to the ‘Alopeke instrument team for flexibility and cooperation during the observations, which disrupted their commissioning work. M.D., P.G. and B.H. are grateful for support from the National Science Centre of Poland through SONATA BIS grant number 2016/22/E/ST9/00109 to M.D.

Author information

Authors and Affiliations



P.G. suggested the target. M.D., P.G., B.H. and S.K. designed the observations and wrote the telescope time proposal. P.G. and M.D. carried out the image cleaning and photometry. W.W. reduced the raw images and performed light curve modelling. M.D. led data analysis and writing of the paper with contributions from P.G. and W.W., S.X. assisted in proposal writing and organization of the observations. All authors checked the work and proofread the paper.

Corresponding authors

Correspondence to Michał Drahus or Piotr Guzik.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–12.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Drahus, M., Guzik, P., Waniak, W. et al. Tumbling motion of 1I/‘Oumuamua and its implications for the body’s distant past. Nat Astron 2, 407–412 (2018).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing