Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The evolution of Titan’s high-altitude aerosols under ultraviolet irradiation

Abstract

The Cassini–Huygens space mission revealed that Titan’s thick brownish haze is initiated high in the atmosphere at an altitude of about 1,000 km, before a slow transportation down to the surface. Close to the surface, at altitudes below 130 km, the Huygens probe provided information on the chemical composition of the haze. So far, we have not had insights into the possible photochemical evolution of the aerosols making up the haze during their descent. Here, we address this atmospheric aerosol aging process, simulating in the laboratory how solar vacuum ultraviolet irradiation affects the aerosol optical properties as probed by infrared spectroscopy. An important evolution was found that could explain the apparent contradiction between the nitrogen-poor infrared spectroscopic signature observed by Cassini below 600 km of altitude in Titan’s atmosphere and a high nitrogen content as measured by the aerosol collector and pyrolyser of the Huygens probe at the surface of Titan.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Experimental set-up.
Fig. 2: Infrared absorption spectra normalized to the highest absorption value at ~1,550 cm1.
Fig. 3: Irradiation experiments.
Fig. 4: Deconvolution into four Gaussian components of the 2,050–2,300cm1 region.
Fig. 5: Magnified view of the aliphatic carbon band after subtraction of the amine contribution.

Similar content being viewed by others

References

  1. Niemann, H. B. et al. The abundances of constituents of Titan’s atmosphere from the GCMS instrument on the Huygens probe. Nature 438, 779–784 (2005).

    Article  ADS  Google Scholar 

  2. Koskinen, T. T. et al. The mesosphere and lower thermosphere of Titan revealed by Cassini/UVIS stellar occultations. Icarus 216, 507–534 (2011).

    Article  ADS  Google Scholar 

  3. Lavvas, P. et al. Aerosol growth in Titan’s ionosphere. Proc. Natl Acad. Sci. USA 110, 2729–2734 (2013).

  4. Waite, J. H. Jr et al. The process of tholin formation in Titan’s upper atmosphere. Science 316, 870–875 (2007).

  5. Coates, A. J. et al. Discovery of heavy negative ions in Titan’s ionosphere. Geophys. Res. Lett. 34, L22103 (2007).

    Article  ADS  Google Scholar 

  6. Lavvas, P., Sander, M., Kraft, M. & Imanaka, H. Surface chemistry and particle shape: processes for the evolution of aerosols in Titan’s atmosphere. Astrophys. J. 728, 80 (2011).

    Article  ADS  Google Scholar 

  7. Porco, C. C. et al. Imaging of Titan from the Cassini spacecraft. Nature 434, 159–168 (2005).

    Article  ADS  Google Scholar 

  8. Tomasko, M. G. et al. A model of Titan’s aerosols based on measurements made inside the atmosphere. Planet. Space Sci. 56, 669–707 (2008).

    Article  ADS  Google Scholar 

  9. Dimitrov, V. & Bar-Nun, A. Aging of Titan’s aerosols. Icarus 156, 530–538 (2002).

    Article  ADS  Google Scholar 

  10. Dimitrov, V. & Bar-Nun, A. Hardening of Titan’s aerosols by their charging. Icarus 166, 440–443 (2003).

    Article  ADS  Google Scholar 

  11. Cable, M. L. et al. Titan tholins: simulating Titan organic chemistry in the Cassini–Huygens era. Chem. Rev. 112, 1882–1909 (2012).

    Article  Google Scholar 

  12. Hörst, S. M. Titan’s atmosphere and climate. J. Geophys. Res. Planets 122, 432–482 (2017).

    Article  ADS  Google Scholar 

  13. Nahon, L. et al. DESIRS: a state-of-the-art VUV beamline featuring high resolution and variable polarization for spectroscopy and dichroism at SOLEIL. J. Synchrotron Rad. 19, 508–520 (2012).

    Article  Google Scholar 

  14. Thuillier, G. et al. Solar irradiance reference spectra for two solar active levels. Adv. Space Res. 34, 256–261 (2004).

    Article  ADS  Google Scholar 

  15. Gautier, T. et al. Mid- and far-infrared absorption spectroscopy of Titan’s aerosols analogues. Icarus 221, 320–327 (2012).

    Article  ADS  Google Scholar 

  16. Khare, B. N. et al. Optical constants of organic tholins produced in a simulated Titanian atmosphere: from soft X-ray to microwave frequencies. Icarus 60, 127–137 (1984).

    Article  ADS  Google Scholar 

  17. Lavvas, P. et al. Energy deposition and primary chemical products in Titan’s upper atmosphere. Icarus 213, 233–251 (2011).

    Article  ADS  Google Scholar 

  18. López-Puertas, M. et al. Large abundances of polycyclic aromatic hydrocarbons in Titan’s upper atmosphere. Astrophys. J. 770, 132 (2013).

    Article  ADS  Google Scholar 

  19. Imanaka, H. et al. Laboratory experiments of Titan tholin formed in cold plasma at various pressures: implications for nitrogen-containing polycyclic aromatic compounds in Titan haze. Icarus 168, 344–366 (2004).

    Article  ADS  Google Scholar 

  20. Quirico, E. et al. New experimental constraints on the composition and structure of tholins. Icarus 198, 218–231 (2008).

    Article  ADS  Google Scholar 

  21. Mutsukura, N. & Akita, K. Infrared absorption spectroscopy measurements of amorphous CN x films prepared in CH4/N2 r.f. discharge. Thin Solid Films 349, 115–119 (1999).

    Article  ADS  Google Scholar 

  22. Gavilan, L. et al. X-ray-induced deuterium enrichment of N-rich organics in protoplanetary disks: an experimental investigation using synchrotron light. Astrophys. J. 840, 35 (2017).

    Article  ADS  Google Scholar 

  23. Skurat, V. Vacuum ultraviolet photochemistry of polymers. Nucl. Instrum. Methods Phys. Res. B 208, 27–34 (2003).

    Article  ADS  Google Scholar 

  24. Kim, S. J. et al. Retrieval and tentative identification of the 3 μm spectral feature in Titan’s haze. Planet. Space Sci. 59, 699–704 (2011).

    Article  ADS  Google Scholar 

  25. Mattioda, A. L. et al. Infrared vibrational and electronic transitions in the dibenzopolyacene family. Spectrochim. Acta A Mol. Biomol. Spectrosc. 130, 639–652 (2014).

    Article  ADS  Google Scholar 

  26. Mattioda, A. L. et al. Infrared spectroscopy of matrix-isolated neutral polycyclic aromatic nitrogen heterocycles: the acridine series. Spectrochim. Acta A Mol. Biomol. Spectrosc. 181, 286–308 (2017).

    Article  ADS  Google Scholar 

  27. Israel, G. et al. Complex organic matter in Titan’s atmospheric aerosols from in situ pyrolysis and analysis. Nature 438, 796–799 (2005).

    Article  ADS  Google Scholar 

  28. Carrasco, N., Westlake, J., Pernot, P. & Waite, H. Jr in The Early Evolution of the Atmospheres of Terrestrial Planets 145–154 (Springer, New York, 2013).

  29. Vuitton, V. et al. Negative ion chemistry in Titan’s upper atmosphere. Planet. Space Sci. 57, 1558–1572 (2009).

    Article  ADS  Google Scholar 

  30. Vuitton, V., Yelle, R. V. & McEwan, M. J. Ion chemistry and N-containing molecules in Titan’s upper atmosphere. Icarus 191, 722–742 (2007).

    Article  ADS  Google Scholar 

  31. Yelle, R. V. et al. Formation of NH3 and CH2NH in Titan’s upper atmosphere. Faraday Discuss. 147, 31–49 (2010).

    Article  ADS  Google Scholar 

  32. He, C. & Smith, M. A. A comprehensive NMR structural study of Titan aerosol analogs: implications for Titan’s atmospheric chemistry. Icarus 243, 31–38 (2014).

    Article  ADS  Google Scholar 

  33. Rannou, P. et al. Titan haze distribution and optical properties retrieved from recent observations. Icarus 208, 850–867 (2010).

    Article  ADS  Google Scholar 

  34. Waite, J. H. Jr et al. Ion neutral mass spectrometer results from the first flyby of Titan. Science 308, 982–986 (2005).

    Article  ADS  Google Scholar 

  35. Szopa, C., Cernogora, G., Boufendi, L., Correia, J.-J. & Coll, P. PAMPRE: a dusty plasma experiment for Titan’s tholins production and study. Planet. Space Sci. 54, 394–404 (2006).

    Article  ADS  Google Scholar 

  36. Sciamma-O’Brien, E., Carrasco, N., Szopa, C., Buch, A. & Cernogora, G. Titan’s atmosphere: an optimal gas mixture for aerosol production? Icarus 209, 704–714 (2010).

    Article  ADS  Google Scholar 

  37. Coll, P. et al. Can laboratory tholins mimic the chemistry producing Titan’s aerosols? A review in light of ACP experimental results. Planet. Space Sci. 77, 91–103 (2013).

    Article  ADS  Google Scholar 

  38. Cunha de Miranda, B. et al. Molecular isomer identification of Titan’s tholins organic aerosols by photoelectron/photoion coincidence spectroscopy coupled to VUV synchrotron radiation. J. Phys. Chem. A 120, 6529–6540 (2016).

    Article  Google Scholar 

  39. Derenne, S. et al. New insights into the structure and chemistry of Titan’s tholins via 13C and 15N solid state nuclear magnetic resonance spectroscopy. Icarus 221, 844–853 (2012).

    Article  ADS  Google Scholar 

  40. Fleury, B. et al. Influence of CO on Titan atmospheric reactivity. Icarus 238, 221–229 (2014).

    Article  ADS  Google Scholar 

  41. Carrasco, N., Jomard, F., Vigneron, J., Etcheberry, A. & Cernogora, G. Laboratory analogues simulating Titan’s atmospheric aerosols: compared chemical compositions of grains and thin films. Planet. Space Sci. 128, 52–57 (2016).

    Article  ADS  Google Scholar 

  42. Mahjoub, A. et al. Influence of methane concentration on the optical indices of Titan’s aerosols analogues. Icarus 221, 670–677 (2012).

    Article  ADS  Google Scholar 

  43. Mercier, B. et al. Experimental and theoretical study of a differentially pumped absorption gas cell used as a low energy-pass filter in the vacuum ultraviolet photon energy range. J. Vac. Sci. Tech. A 18, 2533–2541 (2000).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We are grateful to the SOLEIL staff for running the facility and providing beamtime under project number 20120579. We acknowledge J. F. Gil for technical support and the development and design of the sample holder. N.C. and L.G. thank the European Research Council for funding via the ERC PrimChem project (grant agreement 636829). We are grateful to B. Fleury for the preliminary infrared spectroscopic measurements, as well as P. Pernot for helpful discussions. We thank M. Béchard for help and commitment. S.T. acknowledges the University of Paris-Saclay for thesis funding. The work of M.S.G. at the Jet Propulsion Laboratory, California Institute of Technology was performed under a contract with the National Aeronautics and Space Administration and funded through NASA-SSW grant 'Photochemical Processes in Titan’s Atmosphere'. L.N. acknowledges support from the Agence Nationale de la Recherche (ANR-07-BLAN-0293).

Author information

Authors and Affiliations

Authors

Contributions

N.C. supervised the study, helped to perform the irradiation experiments, treated the infrared spectroscopic data and drafted the article. All authors discussed the results and commented on the manuscript. L.G. characterized the sample thickness by ellipsometric measurements. S.T. helped to conduct the irradiation experience. L.N. conceived the irradiation set-up, prepared the beamline for the irradiation conditions and helped to perform the irradiation experiment. M.S.G. was involved in analysis of the data, its interpretation, reaction mechanisms and applications to Titan’s atmosphere.

Corresponding author

Correspondence to Nathalie Carrasco.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carrasco, N., Tigrine, S., Gavilan, L. et al. The evolution of Titan’s high-altitude aerosols under ultraviolet irradiation. Nat Astron 2, 489–494 (2018). https://doi.org/10.1038/s41550-018-0439-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-018-0439-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing