Oxygen-rich young supernova remnants1 are valuable objects for probing the outcome of nucleosynthetic processes in massive stars, as well as the physics of supernova explosions. Observed within a few thousand years after the supernova explosion2, these systems contain fast-moving oxygen-rich and hydrogen-poor filaments visible at optical wavelengths: fragments of the progenitor’s interior expelled at a few thousand kilometres per second during the supernova explosion. Here we report the identification of the compact object in the supernova remnant 1E 0102.2–7219 in reprocessed Chandra X-ray Observatory data, enabled by the discovery of a ring-shaped structure visible primarily in optical recombination lines of Ne i and O i. The optical ring has a radius of (2.10 ± 0.35)″ ≡ (0.63 ± 0.11) pc, and is expanding at a velocity of 90. 5 - 30 + 40  km s−1. It surrounds an X-ray point source with an intrinsic X-ray luminosity L i (1.2–2.0 keV) = (1.4 ± 0.2) × 1033 erg s−1. The energy distribution of the source indicates that this object is an isolated neutron star: a central compact object akin to those present in the Cas A3,4,5 and Pup A6 supernova remnants, and the first of its kind to be identified outside of our Galaxy.

  • Subscribe to Nature Astronomy for full access:



Additional access options:

Already a subscriber?  Log in  now or  Register  for online access.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    van den Bergh, S. Classification of supernovae and their remnants. Astrophys. J. 327, 156–163 (1988).

  2. 2.

    Winkler, P. F. & Kirshner, R. P. Discovery of fast-moving oxygen filaments in Puppis A. Astrophys. J. 299, 981–986 (1985).

  3. 3.

    Tananbaum, H. Cassiopeia A. Int. Astron. Union Circ. 7246, 1 (1999).

  4. 4.

    Umeda, H., Nomoto, K., Tsuruta, S. & Mineshige, S. Impacts of the detection of Cassiopeia A point source. Astrophys. J. Lett. 534, L193–L196 (2000).

  5. 5.

    Chakrabarty, D., Pivovaroff, M. J., Hernquist, L. E., Heyl, J. S. & Narayan, R. The central X-ray point source in Cassiopeia A. Astrophys. J. 548, 800–810 (2001).

  6. 6.

    Petre, R., Becker, C. M. & Winkler, P. F. A central stellar remnant in Puppis A. Astrophys. J. Lett. 465, L43 (1996).

  7. 7.

    Graczyk, D. et al. The Araucaria Project. The distance to the Small Magellanic Cloud from late-type eclipsing binaries. Astrophys. J. 780, 59 (2014).

  8. 8.

    Scowcroft, V. et al. The Carnegie Hubble Program: the distance and structure of the SMC as revealed by mid-infrared observations of Cepheids. Astrophys. J. 816, 49 (2016).

  9. 9.

    Dopita, M. A., Tuohy, I. R. & Mathewson, D. S. An oxygen-rich young supernova remnant in the Small Magellanic Cloud. Astrophys. J. Lett. 248, L105–L108 (1981).

  10. 10.

    Seward, F. D. & Mitchell, M. X-ray survey of the Small Magellanic Cloud. Astrophys. J. 243, 736–743 (1981).

  11. 11.

    Finkelstein, S. L. et al. Optical structure and proper-motion age of the oxygen-rich supernova remnant 1E 0102–7219 in the Small Magellanic Cloud. Astrophys. J. 641, 919–929 (2006).

  12. 12.

    Blair, W. P. et al. Hubble Space Telescope observations of oxygen-rich supernova remnants in the magellanic clouds. II. Elemental abundances in N132D and 1E 0102.2–7219. Astrophys. J. 537, 667–689 (2000).

  13. 13.

    Seitenzahl, I. R. et al. Integral field spectroscopy of supernova remnant 1E0102-7219 reveals fast-moving hydrogen and sulfur-rich ejecta. Preprint at https://arxiv.org/abs/1801.06289 (2018).

  14. 14.

    Bacon, R. et al. The MUSE second-generation VLT instrument. In Proc. SPIE Vol. 7735: Ground-Based and Airborne Instrumentation for Astronomy III (eds McLean, I. S. et al.) 773508 (2010).

  15. 15.

    Vogt, F. P. A., Seitenzahl, I. R., Dopita, M. A. & Ghavamian, P. [Fe XIV] and [Fe XI] reveal the forward shock in SNR 1E 0102.2–7219. Astron. Astrophys. 602, L4 (2017).

  16. 16.

    Sutherland, R. S. & Dopita, M. A. Young oxygen-rich supernova remnants. 2: An oxygen-rich emission mechanism. Astrophys. J. 439, 381–398 (1995).

  17. 17.

    Gilli, R., Comastri, A. & Hasinger, G. The synthesis of the cosmic X-ray background in the Chandra and XMM-Newton era. Astron. Astrophys. 463, 79–96 (2007).

  18. 18.

    Rutkowski, M. J., Schlegel, E. M., Keohane, J. W. & Windhorst, R. A. An X-ray upper limit on the presence of a neutron star for the Small Magellanic Cloud supernova remnant 1E0102.2–7219. Astrophys. J. 715, 908–918 (2010).

  19. 19.

    Camilo, F., Manchester, R. N., Gaensler, B. M., Lorimer, D. R. & Sarkissian, J. PSR J1124-5916: discovery of a young energetic pulsar in the supernova remnant G292.0+1.8. Astrophys. J. Lett. 567, L71–L75 (2002).

  20. 20.

    Park, S. et al. A half-megasecond chandra observation of the oxygen-rich supernova remnant G292.0+1.8. Astrophys. J. Lett. 670, L121–L124 (2007).

  21. 21.

    Seward, F. D., Harnden, F. R. Jr. & Helfand, D. J. Discovery of a 50 millisecond pulsar in the Large Magellanic Cloud. Astrophys. J. Lett. 287, L19–L22 (1984).

  22. 22.

    Middleditch, J. & Pennypacker, C. Optical pulsations in the Large Magellanic Cloud remnant 0540-69.3. Nature 313, 659–661 (1985).

  23. 23.

    Mignani, R. P. et al. HST/WFPC2 observations of the LMC pulsar PSR B0540-69. Astron. Astrophys. 515, A110 (2010).

  24. 24.

    Mereghetti, S., Tiengo, A. & Israel, G. L. The X-ray source at the center of the Cassiopeia A supernova remnant. Astrophys. J. 569, 275–279 (2002).

  25. 25.

    Viganò, D. et al. Unifying the observational diversity of isolated neutron stars via magneto-thermal evolution models. Mon. Not. R. Astron. Soc. 434, 123–141 (2013).

  26. 26.

    Wang, Z., Kaplan, D. L. & Chakrabarty, D. A search for fallback disks in four young supernova remnants. Astrophys. J. 655, 261–268 (2007).

  27. 27.

    Mignani, R. P., de Luca, A., Mereghetti, S. & Caraveo, P. A. Deep optical observations of the central X-ray source in the Puppis A supernova remnant. Astron. Astrophys. 500, 1211–1214 (2009).

  28. 28.

    Sturm, R. et al. The XMM-Newton survey of the Small Magellanic Cloud: the X-ray point-source catalogue. Astron. Astrophys. 558, A3 (2013).

  29. 29.

    Haberl, F. & Sturm, R. High-mass X-ray binaries in the Small Magellanic Cloud. Astron. Astrophys. 586, A81 (2016).

  30. 30.

    Gilfanov, M. Low-mass X-ray binaries as a stellar mass indicator for the host galaxy. Mon. Not. R. Astron. Soc. 349, 146–168 (2004).

  31. 31.

    Kargaltsev, O. & Pavlov, G. G. Pulsar wind nebulae in the Chandra era. Preprint at https://arxiv.org/abs/0801.2602 (2008).

  32. 32.

    Pavlov, G. G., Sanwal, D. & Teter, M. A. Central compact objects in supernova remnants. In Proc. IAU Symposium Vol. 218 (eds Camilo, F. & Gaensler, B. M.) 239 (2004).

  33. 33.

    Pavlov, G. G. & Luna, G. J. M. A dedicated Chandra ACIS observation of the central compact object in the Cassiopeia A supernova remnant. Astrophys. J. 703, 910–921 (2009).

  34. 34.

    Weilbacher, P. M. et al. A MUSE map of the central Orion Nebula (M 42). Astron. Astrophys. 582, A114 (2015).

  35. 35.

    Vogt, F. P. A. Gas flows and star formation as a consequence of galaxy interaction in compact groups. PhD thesis, Australian National Univ. (2015).

  36. 36.

    Hamilton, A. J. S. & Fesen, R. A. The reionization of unshocked ejecta in SN 1006. Astrophys. J. 327, 178–196 (1988).

  37. 37.

    Umeda, H. & Yoshida, T. in Handbook of Supernovae (eds Alsabti, A. W. & Murdin, P.) 1753–1770 (Springer, 2016).

  38. 38.

    Hix, W. R. & Harris, J. A. in Handbook of Supernovae (eds Alsabti, A. W. & Murdin, P.) 1771–1789 (Springer, 2016).

  39. 39.

    Seabold, S. & Perktold, J. Statsmodels: econometric and statistical modeling with Python. In Proc. 9th Python Sci. Conference 57–61 (2010).

  40. 40.

    Hunter, J. D. Matplotlib: a 2D graphics environment. Comput. Sci. Eng. 9, 90–95 (2007).

  41. 41.

    Astropy Collaboration. et al. Astropy: a community Python package for astronomy. Astron. Astrophys. 558, A33 (2013).

  42. 42.

    Robitaille, T. & Bressert, E. APLpy: astronomical plotting library in Python. Astrophysics Source Code Library 1208.017 (2012).

  43. 43.

    Bonnarel, F. et al. The ALADIN interactive sky atlas: a reference tool for identification of astronomical sources. Astron. Astrophys. Suppl. Ser. 143, 33–40 (2000).

  44. 44.

    Joye, W. A. & Mandel, E. New features of SAOImage DS9. In Astronomical Data Analysis Software and Systems XII ASP Conference Series Vol. 295, 489 (2003).

  45. 45.

    Helou, G. et al. The NASA/IPAC extragalactic database. Databases On-line Data Astron. 171, 89–106 (1991).

  46. 46.

    Cleveland, W. S. Robust locally weighted regression and smoothing scatterplots. J. Am. Stat. Assoc. 74, 829–836 (1979).

  47. 47.

    Gaia Collaboration. The Gaia mission. Astron. Astrophys. 595, A1 (2016).

  48. 48.

    Gaia Collaboration. Gaia data release 1. Summary of the astrometric, photometric, and survey properties. Astron. Astrophys. 595, A2 (2016).

  49. 49.

    Plucinsky, P. P. et al. SNR 1E 0102.2–7219 as an X-ray calibration standard in the 0.5–1.0 keV bandpass and its application to the CCD instruments aboard Chandra, Suzaku, Swift and XMM-Newton. Astron. Astrophys. 597, A35 (2017).

  50. 50.

    Dickey, J. M. & Lockman, F. J. H I in the Galaxy. Annu. Rev. Astron. Astr. 28, 215–261 (1990).

  51. 51.

    Sasaki, M. et al. Far-ultraviolet and X-ray observations of the reverse shock in the Small Magellanic Cloud supernova remnant 1E 0102.2–7219. Astrophys. J. 642, 260–269 (2006).

  52. 52.

    Moré, J. J. The Levenberg-Marquardt algorithm: implementation and theory. In Numerical Analysis: Proc. Biennial Conference 105–116 (Springer, 1978).

  53. 53.

    Kramida, A., Ralchenko, Y., Reader, J. & Team, N. A. NIST Atomic Spectra Database Version 5.4 (2016).

Download references


We thank E. M. Schlegel for constructive comments. This research has made use of BRUTUS, a Python module to process data cubes from integral field spectrographs hosted at http://fpavogt.github.io/brutus/. For this analysis, BRUTUS relied on STATSMODEL39, MATPLOTLIB40, ASTROPY (a community-developed core Python package for astronomy)41, APLPY (an open-source plotting package for Python)42, and montage, funded by the National Science Foundation under Grant Number ACI-1440620 and previously funded by the National Aeronautics and Space Administration’s Earth Science Technology Office, Computation Technologies Project, under Cooperative Agreement Number NCC5-626 between NASA and the California Institute of Technology.

This research has also made use of DRIZZLEPAC, a product of the Space Telescope Science Institute, which is operated by AURA for NASA, of the ALADIN interactive sky atlas43, of SAOIMAGE DS944 developed by Smithsonian Astrophysical Observatory, of NASA’s Astrophysics Data System, and of the NASA/IPAC Extragalactic Database45, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.

This work has made use of data from the European Space Agency (ESA) mission Gaia (https://www.cosmos.esa.int/gaia), processed by the Gaia Data Processing and Analysis Consortium (DPAC, https://www.cosmos.esa.int/web/gaia/dpac/consortium). Funding for the DPAC has been provided by national institutions, in particular the institutions participating in the Gaia Multilateral Agreement. Some of the data presented in this paper were obtained from the Mikulski Archive for Space Telescopes (MAST). STScI is operated by the Association of Universities for Research in Astronomy, under NASA contract NAS5-26555. Support for MAST for non-HST data is provided by the NASA Office of Space Science via grant NNX09AF08G and by other grants and contracts.

I.R.S. was supported by Australian Research Council Grant FT160100028. P.G. acknowledges support from HST grant HST-GO-14359.011. A.J.R. has been funded by the Australian Research Council grant numbers CE110001020 (CAASTRO) and FT170100243. F.P.A.V. and I.R.S. thank the CAASTRO AI travel grant for generous support. P.G. thanks the Stromlo Distinguished Visitor Program. F.P.A.V. and E.S.B. are European Southern Observatory (ESO) Fellows. A.J.R. was affiliated, in part, with the ARC Centre for All-sky Astrophysics (CAASTRO).

This study is based on observations made with ESO Telescopes at the La Silla Paranal Observatory under program ID 297.D-5058.

Author information


  1. European Southern Observatory, Vitacura, Santiago, Chile

    • Frédéric P. A. Vogt
    •  & Elizabeth S. Bartlett
  2. School of Physical, Environmental and Mathematical Sciences, University of New South Wales, Australian Defence Force Academy, Canberra, Australian Capital Territory, Australia

    • Ivo R. Seitenzahl
    •  & Ashley J. Ruiter
  3. Research School of Astronomy and Astrophysics, Australian National University, Canberra, Australian Capital Territory, Australia

    • Ivo R. Seitenzahl
    • , Michael A. Dopita
    •  & Ashley J. Ruiter
  4. Department of Physics, Astronomy and Geosciences, Towson University, Towson, MD, USA

    • Parviz Ghavamian
  5. Department of Physics and Astronomy, University of Georgia, Athens, GA, USA

    • Jason P. Terry


  1. Search for Frédéric P. A. Vogt in:

  2. Search for Elizabeth S. Bartlett in:

  3. Search for Ivo R. Seitenzahl in:

  4. Search for Michael A. Dopita in:

  5. Search for Parviz Ghavamian in:

  6. Search for Ashley J. Ruiter in:

  7. Search for Jason P. Terry in:


F.P.A.V. reduced and lead the analysis of the MUSE datacube. E.S.B. lead the spectral analysis of the Chandra dataset. All authors contributed to the interpretation of the observations, and the writing of the manuscript.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Frédéric P. A. Vogt.

Supplementary information

  1. Supplementary Information

    Supplementary Figures 1–6, Supplementary Tables 1–5

About this article

Publication history






Rights and permissions

To obtain permission to re-use content from this article visit RightsLink.