Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Identification of the central compact object in the young supernova remnant 1E 0102.2–7219


Oxygen-rich young supernova remnants1 are valuable objects for probing the outcome of nucleosynthetic processes in massive stars, as well as the physics of supernova explosions. Observed within a few thousand years after the supernova explosion2, these systems contain fast-moving oxygen-rich and hydrogen-poor filaments visible at optical wavelengths: fragments of the progenitor’s interior expelled at a few thousand kilometres per second during the supernova explosion. Here we report the identification of the compact object in the supernova remnant 1E 0102.2–7219 in reprocessed Chandra X-ray Observatory data, enabled by the discovery of a ring-shaped structure visible primarily in optical recombination lines of Ne i and O i. The optical ring has a radius of (2.10 ± 0.35)″ ≡ (0.63 ± 0.11) pc, and is expanding at a velocity of \(90.{5}_{-30}^{+40}\) km s−1. It surrounds an X-ray point source with an intrinsic X-ray luminosity L i (1.2–2.0 keV) = (1.4 ± 0.2) × 1033 erg s−1. The energy distribution of the source indicates that this object is an isolated neutron star: a central compact object akin to those present in the Cas A3,4,5 and Pup A6 supernova remnants, and the first of its kind to be identified outside of our Galaxy.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Global optical and X-ray view of E0102.
Fig. 2: X-ray spectral signature of p1 and associated modelling.
Fig. 3: Close-up view of the optical ring and CCO.
Fig. 4: Spectral analysis of the optical ring.


  1. 1.

    van den Bergh, S. Classification of supernovae and their remnants. Astrophys. J. 327, 156–163 (1988).

    ADS  Article  Google Scholar 

  2. 2.

    Winkler, P. F. & Kirshner, R. P. Discovery of fast-moving oxygen filaments in Puppis A. Astrophys. J. 299, 981–986 (1985).

    ADS  Article  Google Scholar 

  3. 3.

    Tananbaum, H. Cassiopeia A. Int. Astron. Union Circ. 7246, 1 (1999).

    ADS  Google Scholar 

  4. 4.

    Umeda, H., Nomoto, K., Tsuruta, S. & Mineshige, S. Impacts of the detection of Cassiopeia A point source. Astrophys. J. Lett. 534, L193–L196 (2000).

    ADS  Article  Google Scholar 

  5. 5.

    Chakrabarty, D., Pivovaroff, M. J., Hernquist, L. E., Heyl, J. S. & Narayan, R. The central X-ray point source in Cassiopeia A. Astrophys. J. 548, 800–810 (2001).

    ADS  Article  Google Scholar 

  6. 6.

    Petre, R., Becker, C. M. & Winkler, P. F. A central stellar remnant in Puppis A. Astrophys. J. Lett. 465, L43 (1996).

    ADS  Article  Google Scholar 

  7. 7.

    Graczyk, D. et al. The Araucaria Project. The distance to the Small Magellanic Cloud from late-type eclipsing binaries. Astrophys. J. 780, 59 (2014).

    ADS  Article  Google Scholar 

  8. 8.

    Scowcroft, V. et al. The Carnegie Hubble Program: the distance and structure of the SMC as revealed by mid-infrared observations of Cepheids. Astrophys. J. 816, 49 (2016).

    ADS  Article  Google Scholar 

  9. 9.

    Dopita, M. A., Tuohy, I. R. & Mathewson, D. S. An oxygen-rich young supernova remnant in the Small Magellanic Cloud. Astrophys. J. Lett. 248, L105–L108 (1981).

    ADS  Article  Google Scholar 

  10. 10.

    Seward, F. D. & Mitchell, M. X-ray survey of the Small Magellanic Cloud. Astrophys. J. 243, 736–743 (1981).

    ADS  Article  Google Scholar 

  11. 11.

    Finkelstein, S. L. et al. Optical structure and proper-motion age of the oxygen-rich supernova remnant 1E 0102–7219 in the Small Magellanic Cloud. Astrophys. J. 641, 919–929 (2006).

    ADS  Article  Google Scholar 

  12. 12.

    Blair, W. P. et al. Hubble Space Telescope observations of oxygen-rich supernova remnants in the magellanic clouds. II. Elemental abundances in N132D and 1E 0102.2–7219. Astrophys. J. 537, 667–689 (2000).

    ADS  Article  Google Scholar 

  13. 13.

    Seitenzahl, I. R. et al. Integral field spectroscopy of supernova remnant 1E0102-7219 reveals fast-moving hydrogen and sulfur-rich ejecta. Preprint at (2018).

  14. 14.

    Bacon, R. et al. The MUSE second-generation VLT instrument. In Proc. SPIE Vol. 7735: Ground-Based and Airborne Instrumentation for Astronomy III (eds McLean, I. S. et al.) 773508 (2010).

  15. 15.

    Vogt, F. P. A., Seitenzahl, I. R., Dopita, M. A. & Ghavamian, P. [Fe XIV] and [Fe XI] reveal the forward shock in SNR 1E 0102.2–7219. Astron. Astrophys. 602, L4 (2017).

    ADS  Article  Google Scholar 

  16. 16.

    Sutherland, R. S. & Dopita, M. A. Young oxygen-rich supernova remnants. 2: An oxygen-rich emission mechanism. Astrophys. J. 439, 381–398 (1995).

    ADS  Article  Google Scholar 

  17. 17.

    Gilli, R., Comastri, A. & Hasinger, G. The synthesis of the cosmic X-ray background in the Chandra and XMM-Newton era. Astron. Astrophys. 463, 79–96 (2007).

    ADS  Article  Google Scholar 

  18. 18.

    Rutkowski, M. J., Schlegel, E. M., Keohane, J. W. & Windhorst, R. A. An X-ray upper limit on the presence of a neutron star for the Small Magellanic Cloud supernova remnant 1E0102.2–7219. Astrophys. J. 715, 908–918 (2010).

    ADS  Article  Google Scholar 

  19. 19.

    Camilo, F., Manchester, R. N., Gaensler, B. M., Lorimer, D. R. & Sarkissian, J. PSR J1124-5916: discovery of a young energetic pulsar in the supernova remnant G292.0+1.8. Astrophys. J. Lett. 567, L71–L75 (2002).

    ADS  Article  Google Scholar 

  20. 20.

    Park, S. et al. A half-megasecond chandra observation of the oxygen-rich supernova remnant G292.0+1.8. Astrophys. J. Lett. 670, L121–L124 (2007).

    ADS  Article  Google Scholar 

  21. 21.

    Seward, F. D., Harnden, F. R. Jr. & Helfand, D. J. Discovery of a 50 millisecond pulsar in the Large Magellanic Cloud. Astrophys. J. Lett. 287, L19–L22 (1984).

    ADS  Article  Google Scholar 

  22. 22.

    Middleditch, J. & Pennypacker, C. Optical pulsations in the Large Magellanic Cloud remnant 0540-69.3. Nature 313, 659–661 (1985).

    ADS  Article  Google Scholar 

  23. 23.

    Mignani, R. P. et al. HST/WFPC2 observations of the LMC pulsar PSR B0540-69. Astron. Astrophys. 515, A110 (2010).

    Article  Google Scholar 

  24. 24.

    Mereghetti, S., Tiengo, A. & Israel, G. L. The X-ray source at the center of the Cassiopeia A supernova remnant. Astrophys. J. 569, 275–279 (2002).

    ADS  Article  Google Scholar 

  25. 25.

    Viganò, D. et al. Unifying the observational diversity of isolated neutron stars via magneto-thermal evolution models. Mon. Not. R. Astron. Soc. 434, 123–141 (2013).

    ADS  Article  Google Scholar 

  26. 26.

    Wang, Z., Kaplan, D. L. & Chakrabarty, D. A search for fallback disks in four young supernova remnants. Astrophys. J. 655, 261–268 (2007).

    ADS  Article  Google Scholar 

  27. 27.

    Mignani, R. P., de Luca, A., Mereghetti, S. & Caraveo, P. A. Deep optical observations of the central X-ray source in the Puppis A supernova remnant. Astron. Astrophys. 500, 1211–1214 (2009).

    ADS  Article  Google Scholar 

  28. 28.

    Sturm, R. et al. The XMM-Newton survey of the Small Magellanic Cloud: the X-ray point-source catalogue. Astron. Astrophys. 558, A3 (2013).

    Article  Google Scholar 

  29. 29.

    Haberl, F. & Sturm, R. High-mass X-ray binaries in the Small Magellanic Cloud. Astron. Astrophys. 586, A81 (2016).

    ADS  Article  Google Scholar 

  30. 30.

    Gilfanov, M. Low-mass X-ray binaries as a stellar mass indicator for the host galaxy. Mon. Not. R. Astron. Soc. 349, 146–168 (2004).

    ADS  Article  Google Scholar 

  31. 31.

    Kargaltsev, O. & Pavlov, G. G. Pulsar wind nebulae in the Chandra era. Preprint at (2008).

  32. 32.

    Pavlov, G. G., Sanwal, D. & Teter, M. A. Central compact objects in supernova remnants. In Proc. IAU Symposium Vol. 218 (eds Camilo, F. & Gaensler, B. M.) 239 (2004).

  33. 33.

    Pavlov, G. G. & Luna, G. J. M. A dedicated Chandra ACIS observation of the central compact object in the Cassiopeia A supernova remnant. Astrophys. J. 703, 910–921 (2009).

    ADS  Article  Google Scholar 

  34. 34.

    Weilbacher, P. M. et al. A MUSE map of the central Orion Nebula (M 42). Astron. Astrophys. 582, A114 (2015).

    Article  Google Scholar 

  35. 35.

    Vogt, F. P. A. Gas flows and star formation as a consequence of galaxy interaction in compact groups. PhD thesis, Australian National Univ. (2015).

  36. 36.

    Hamilton, A. J. S. & Fesen, R. A. The reionization of unshocked ejecta in SN 1006. Astrophys. J. 327, 178–196 (1988).

    ADS  Article  Google Scholar 

  37. 37.

    Umeda, H. & Yoshida, T. in Handbook of Supernovae (eds Alsabti, A. W. & Murdin, P.) 1753–1770 (Springer, 2016).

  38. 38.

    Hix, W. R. & Harris, J. A. in Handbook of Supernovae (eds Alsabti, A. W. & Murdin, P.) 1771–1789 (Springer, 2016).

  39. 39.

    Seabold, S. & Perktold, J. Statsmodels: econometric and statistical modeling with Python. In Proc. 9th Python Sci. Conference 57–61 (2010).

  40. 40.

    Hunter, J. D. Matplotlib: a 2D graphics environment. Comput. Sci. Eng. 9, 90–95 (2007).

    Article  Google Scholar 

  41. 41.

    Astropy Collaboration. et al. Astropy: a community Python package for astronomy. Astron. Astrophys. 558, A33 (2013).

    Article  Google Scholar 

  42. 42.

    Robitaille, T. & Bressert, E. APLpy: astronomical plotting library in Python. Astrophysics Source Code Library 1208.017 (2012).

  43. 43.

    Bonnarel, F. et al. The ALADIN interactive sky atlas: a reference tool for identification of astronomical sources. Astron. Astrophys. Suppl. Ser. 143, 33–40 (2000).

    ADS  Article  Google Scholar 

  44. 44.

    Joye, W. A. & Mandel, E. New features of SAOImage DS9. In Astronomical Data Analysis Software and Systems XII ASP Conference Series Vol. 295, 489 (2003).

  45. 45.

    Helou, G. et al. The NASA/IPAC extragalactic database. Databases On-line Data Astron. 171, 89–106 (1991).

    ADS  Article  Google Scholar 

  46. 46.

    Cleveland, W. S. Robust locally weighted regression and smoothing scatterplots. J. Am. Stat. Assoc. 74, 829–836 (1979).

    MathSciNet  Article  MATH  Google Scholar 

  47. 47.

    Gaia Collaboration. The Gaia mission. Astron. Astrophys. 595, A1 (2016).

    Article  Google Scholar 

  48. 48.

    Gaia Collaboration. Gaia data release 1. Summary of the astrometric, photometric, and survey properties. Astron. Astrophys. 595, A2 (2016).

    Article  Google Scholar 

  49. 49.

    Plucinsky, P. P. et al. SNR 1E 0102.2–7219 as an X-ray calibration standard in the 0.5–1.0 keV bandpass and its application to the CCD instruments aboard Chandra, Suzaku, Swift and XMM-Newton. Astron. Astrophys. 597, A35 (2017).

    Article  Google Scholar 

  50. 50.

    Dickey, J. M. & Lockman, F. J. H I in the Galaxy. Annu. Rev. Astron. Astr. 28, 215–261 (1990).

    ADS  Article  Google Scholar 

  51. 51.

    Sasaki, M. et al. Far-ultraviolet and X-ray observations of the reverse shock in the Small Magellanic Cloud supernova remnant 1E 0102.2–7219. Astrophys. J. 642, 260–269 (2006).

    ADS  Article  Google Scholar 

  52. 52.

    Moré, J. J. The Levenberg-Marquardt algorithm: implementation and theory. In Numerical Analysis: Proc. Biennial Conference 105–116 (Springer, 1978).

  53. 53.

    Kramida, A., Ralchenko, Y., Reader, J. & Team, N. A. NIST Atomic Spectra Database Version 5.4 (2016).

Download references


We thank E. M. Schlegel for constructive comments. This research has made use of BRUTUS, a Python module to process data cubes from integral field spectrographs hosted at For this analysis, BRUTUS relied on STATSMODEL39, MATPLOTLIB40, ASTROPY (a community-developed core Python package for astronomy)41, APLPY (an open-source plotting package for Python)42, and montage, funded by the National Science Foundation under Grant Number ACI-1440620 and previously funded by the National Aeronautics and Space Administration’s Earth Science Technology Office, Computation Technologies Project, under Cooperative Agreement Number NCC5-626 between NASA and the California Institute of Technology.

This research has also made use of DRIZZLEPAC, a product of the Space Telescope Science Institute, which is operated by AURA for NASA, of the ALADIN interactive sky atlas43, of SAOIMAGE DS944 developed by Smithsonian Astrophysical Observatory, of NASA’s Astrophysics Data System, and of the NASA/IPAC Extragalactic Database45, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.

This work has made use of data from the European Space Agency (ESA) mission Gaia (, processed by the Gaia Data Processing and Analysis Consortium (DPAC, Funding for the DPAC has been provided by national institutions, in particular the institutions participating in the Gaia Multilateral Agreement. Some of the data presented in this paper were obtained from the Mikulski Archive for Space Telescopes (MAST). STScI is operated by the Association of Universities for Research in Astronomy, under NASA contract NAS5-26555. Support for MAST for non-HST data is provided by the NASA Office of Space Science via grant NNX09AF08G and by other grants and contracts.

I.R.S. was supported by Australian Research Council Grant FT160100028. P.G. acknowledges support from HST grant HST-GO-14359.011. A.J.R. has been funded by the Australian Research Council grant numbers CE110001020 (CAASTRO) and FT170100243. F.P.A.V. and I.R.S. thank the CAASTRO AI travel grant for generous support. P.G. thanks the Stromlo Distinguished Visitor Program. F.P.A.V. and E.S.B. are European Southern Observatory (ESO) Fellows. A.J.R. was affiliated, in part, with the ARC Centre for All-sky Astrophysics (CAASTRO).

This study is based on observations made with ESO Telescopes at the La Silla Paranal Observatory under program ID 297.D-5058.

Author information




F.P.A.V. reduced and lead the analysis of the MUSE datacube. E.S.B. lead the spectral analysis of the Chandra dataset. All authors contributed to the interpretation of the observations, and the writing of the manuscript.

Corresponding author

Correspondence to Frédéric P. A. Vogt.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–6, Supplementary Tables 1–5

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vogt, F.P.A., Bartlett, E.S., Seitenzahl, I.R. et al. Identification of the central compact object in the young supernova remnant 1E 0102.2–7219. Nat Astron 2, 465–471 (2018).

Download citation


Quick links