Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Recent progress in simulating galaxy formation from the largest to the smallest scales

Abstract

Galaxy formation simulations are an essential part of the modern toolkit of astrophysicists and cosmologists alike. Astrophysicists use the simulations to study the emergence of galaxy populations from the Big Bang, as well as the formation of stars and supermassive black holes. For cosmologists, galaxy formation simulations are needed to understand how baryonic processes affect measurements of dark matter and dark energy. Owing to the extreme dynamic range of galaxy formation, advances are driven by novel approaches using simulations with different tradeoffs between volume and resolution. Large-volume but low-resolution simulations provide the best statistics, while higher-resolution simulations of smaller cosmic volumes can be evolved with self-consistent physics and reveal important emergent phenomena. I summarize recent progress in galaxy formation simulations, including major developments in the past five years, and highlight some key areas likely to drive further advances over the next decade.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Normalized SFR versus redshift for simulated galaxies from the FIRE project (running mean averaged over a period of 300 Myr).

adapted from ref. 73, Oxford Univ. Press.

Fig. 2: Example gas distribution in a cosmological zoom-in simulation of a Milky Way-mass galaxy from the FIRE project.

adapted from ref. 46, Oxford Univ. Press.

References

  1. Planck Collaboration, Ade, P. A. R. et al. Planck 2015 results. XIII. Cosmological parameters. Astron. Astrophys. 594, A13 (2016).

    Article  Google Scholar 

  2. Heitmann, K., White, M., Wagner, C., Habib, S. & Higdon, D. The Coyote Universe. I. Precision determination of the nonlinear matter power spectrum. Astrophys. J. 715, 104–121 (2010).

    ADS  Article  Google Scholar 

  3. van Daalen, M. P., Schaye, J., Booth, C. M. & Dalla Vecchia, C. The effects of galaxy formation on the matter power spectrum: a challenge for precision cosmology. Mon. Not. R. Astron. Soc. 415, 3649–3665 (2011).

    ADS  Article  Google Scholar 

  4. White, S. D. M. & Frenk, C. S. Galaxy formation through hierarchical clustering. Astrophys. J. 379, 52–79 (1991).

    ADS  Article  Google Scholar 

  5. Somerville, R. S., Primack, J. R. & Faber, S. M. The nature of high-redshift galaxies. Mon. Not. R. Astron. Soc. 320, 504–528 (2001).

    ADS  Article  Google Scholar 

  6. Behroozi, P. S., Wechsler, R. H. & Conroy, C. The average star formation histories of galaxies in dark matter halos from z = 0–8. Astrophys. J. 770, 57 (2013).

    ADS  Article  Google Scholar 

  7. Moster, B. P., Naab, T. & White, S. D. M. Galactic star formation and accretion histories from matching galaxies to dark matter haloes. Mon. Not. R. Astron. Soc. 428, 3121–3138 (2013).

    ADS  Article  Google Scholar 

  8. Hearin, A. P. & Watson, D. F. The dark side of galaxy colour. Mon. Not. R. Astron. Soc. 435, 1313–1324 (2013).

    ADS  Article  Google Scholar 

  9. Navarro, J. F. & White, S. D. M. Simulations of dissipative galaxy formation in hierarchically clustering universes-2. Dynamics of the baryonic component in galactic haloes. Mon. Not. R. Astron. Soc. 267, 401–412 (1994).

    ADS  Article  Google Scholar 

  10. Larson, R. B. Effects of supernovae on the early evolution of galaxies. Mon. Not. R. Astron. Soc. 169, 229–246 (1974).

    ADS  Article  Google Scholar 

  11. Dekel, A. & Silk, J. The origin of dwarf galaxies, cold dark matter, and biased galaxy formation. Astrophys. J. 303, 39–55 (1986).

    ADS  Article  Google Scholar 

  12. Thacker, R. J. & Couchman, H. M. P. Star formation, supernova feedback, and the angular momentum problem in numerical cold dark matter cosmogony: halfway there? Astrophys. J. Lett. 555, L17–L20 (2001).

    ADS  Article  Google Scholar 

  13. Stinson, G. et al. Star formation and feedback in smoothed particle hydrodynamic simulations - I. Isolated galaxies. Mon. Not. R. Astron. Soc. 373, 1074–1090 (2006).

    ADS  Article  Google Scholar 

  14. Dalla Vecchia, C. & Schaye, J. Simulating galactic outflows with thermal supernova feedback. Mon. Not. R. Astron. Soc. 426, 140–158 (2012).

    ADS  Article  Google Scholar 

  15. Springel, V. & Hernquist, L. The history of star formation in a Λ cold dark matter universe. Mon. Not. R. Astron. Soc. 339, 312–334 (2003).

    ADS  Article  Google Scholar 

  16. Oppenheimer, B. D. & Davé, R. Cosmological simulations of intergalactic medium enrichment from galactic outflows. Mon. Not. R. Astron. Soc. 373, 1265–1292 (2006).

    ADS  Article  Google Scholar 

  17. Oppenheimer, B. D. et al. Feedback and recycled wind accretion: assembling the z = 0 galaxy mass function. Mon. Not. R. Astron. Soc. 406, 2325–2338 (2010).

    ADS  Article  Google Scholar 

  18. Guedes, J., Callegari, S., Madau, P. & Mayer, L. Forming realistic late-type spirals in a ΛCDM Universe: The Eris Simulation. Astrophys. J. 742, 76 (2011).

    ADS  Article  Google Scholar 

  19. Schaye, J. et al. The physics driving the cosmic star formation history. Mon. Not. R. Astron. Soc. 402, 1536–1560 (2010).

    ADS  Article  Google Scholar 

  20. Crain, R. A. et al. The EAGLE simulations of galaxy formation: calibration of subgrid physics and model variations. Mon. Not. R. Astron. Soc. 450, 1937–1961 (2015).

    ADS  Article  Google Scholar 

  21. Vogelsberger, M. et al. Introducing the Illustris Project: simulating the coevolution of dark and visible matter in the Universe. Mon. Not. R. Astron. Soc. 444, 1518–1547 (2014).

    ADS  Article  Google Scholar 

  22. Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. Mon. Not. R. Astron. Soc. 446, 521–554 (2015).

    ADS  Article  Google Scholar 

  23. Benson, A. J. et al. What shapes the luminosity function of galaxies? Astrophys. J. 599, 38–49 (2003).

    ADS  Article  Google Scholar 

  24. Croton, D. J. et al. The many lives of active galactic nuclei: cooling flows, black holes and the luminosities and colours of galaxies. Mon. Not. R. Astron. Soc. 365, 11–28 (2006).

    ADS  Article  Google Scholar 

  25. Somerville, R. S. & Davé, R. Physical models of galaxy formation in a cosmological framework. Ann. Rev. Astron. Astrophys. 53, 51–113 (2015).

    ADS  Article  Google Scholar 

  26. Nelson, D. et al. First results from the IllustrisTNG simulations: the galaxy colour bimodality. Mon. Not. R. Astron. Soc. 475, 624–647 (2018).

    ADS  Article  Google Scholar 

  27. Trayford, J. W. et al. Optical colours and spectral indices of z = 0.1 EAGLE galaxies with the 3D dust radiative transfer code skirt. Mon. Not. R. Astron. Soc. 470, 771–799 (2017).

    ADS  Article  Google Scholar 

  28. Faucher-Giguère, C.-A. et al. Neutral hydrogen in galaxy haloes at the peak of the cosmic star formation history. Mon. Not. R. Astron. Soc. 449, 987–1003 (2015).

    ADS  Article  Google Scholar 

  29. Turner, M. L., Schaye, J., Crain, R. A., Theuns, T. & Wendt, M. Observations of metals in the z ~ 3.5 intergalactic medium and comparison to the EAGLE simulations. Mon. Not. R. Astron. Soc. 462, 2440–2464 (2016).

    ADS  Article  Google Scholar 

  30. Suresh, J. et al. On the OVI abundance in the circumgalactic medium of low-redshift galaxies. Mon. Not. R. Astron. Soc. 465, 2966–2982 (2017).

    ADS  Article  Google Scholar 

  31. Snyder, G. F. et al. Galaxy morphology and star formation in the Illustris Simulation at z = 0. Mon. Not. R. Astron. Soc. 454, 1886–1908 (2015).

    ADS  Article  Google Scholar 

  32. Segers, M. C. et al. Recycled stellar ejecta as fuel for star formation and implications for the origin of the galaxy mass-metallicity relation. Mon. Not. R. Astron. Soc. 456, 1235–1258 (2016).

    ADS  Article  Google Scholar 

  33. Springel, V. et al. First results from the IllustrisTNG simulations: matter and galaxy clustering. Mon. Not. R. Astron. Soc. 475, 676–698 (2018).

    ADS  Article  Google Scholar 

  34. Padoan, P., Haugbølle, T. & Nordlund, Å. A simple law of star formation. Astrophys. J. Lett. 759, L27 (2012).

    ADS  Article  Google Scholar 

  35. Krumholz, M. R., Dekel, A. & McKee, C. F. A Universal, local star formation law in galactic clouds, nearby galaxies, high-redshift disks, and starbursts. Astrophys. J. 745, 69 (2012).

    ADS  Article  Google Scholar 

  36. Raskutti, S., Ostriker, E. C. & Skinner, M. A. Numerical simulations of turbulent molecular clouds regulated by radiation feedback forces. I. Star formation rate and efficiency. Astrophys. J. 829, 130 (2016).

    ADS  Article  Google Scholar 

  37. Richings, A. J. & Schaye, J. Chemical evolution of giant molecular clouds in simulations of galaxies. Mon. Not. R. Astron. Soc. 460, 2297–2321 (2016).

    ADS  Article  Google Scholar 

  38. Davé, R., Thompson, R. & Hopkins, P. F. MUFASA: galaxy formation simulations with meshless hydrodynamics. Mon. Not. R. Astron. Soc. 462, 3265–3284 (2016).

    ADS  Article  Google Scholar 

  39. Stinson, G. S. et al. Making galaxies in a cosmological context: the need for early stellar feedback. Mon. Not. R. Astron. Soc. 428, 129–140 (2013).

    ADS  Article  Google Scholar 

  40. Agertz, O. & Kravtsov, A. V. On the interplay between star formation and feedback in galaxy formation simulations. Astrophys. J. 804, 18 (2015).

    ADS  Article  Google Scholar 

  41. Wetzel, A. R. et al. Reconciling dwarf galaxies with ΛCDM cosmology: simulating a realistic population of satellites around a Milky Way-mass galaxy. Astrophys. J. Lett. 827, L23 (2016).

    ADS  Article  Google Scholar 

  42. Fitts, A. et al. FIRE in the field: simulating the threshold of galaxy formation. Mon. Not. R. Astron. Soc. 471, 3547–3562 (2017).

    ADS  Article  Google Scholar 

  43. Martizzi, D., Faucher-Giguère, C.-A. & Quataert, E. Supernova feedback in an inhomogeneous interstellar medium. Mon. Not. R. Astron. Soc. 450, 504–522 (2015).

    ADS  Article  Google Scholar 

  44. Girichidis, P. et al. The SILCC (SImulating the LifeCycle of molecular Clouds) project - II. Dynamical evolution of the supernova-driven ISM and the launching of outflows. Mon. Not. R. Astron. Soc. 456, 3432–3455 (2016).

    ADS  Article  Google Scholar 

  45. Fielding, D., Quataert, E., Martizzi, D. & Faucher-Giguère, C.-A. How supernovae launch galactic winds? Mon. Not. R. Astron. Soc. 470, L39–L43 (2017).

    ADS  Article  Google Scholar 

  46. Hopkins, P. F. et al. Galaxies on FIRE (Feedback In Realistic Environments): stellar feedback explains cosmologically inefficient star formation. Mon. Not. R. Astron. Soc. 445, 581–603 (2014).

    ADS  Article  Google Scholar 

  47. Kim, C.-G. & Ostriker, E. C. Momentum injection by supernovae in the interstellar medium. Astrophys. J. 802, 99 (2015).

    ADS  Article  Google Scholar 

  48. Kimm, T., Cen, R., Devriendt, J., Dubois, Y. & Slyz, A. Towards simulating star formation in turbulent high-z galaxies with mechanical supernova feedback. Mon. Not. R. Astron. Soc. 451, 2900–2921 (2015).

    ADS  Article  Google Scholar 

  49. Keller, B. W., Wadsley, J., Benincasa, S. M. & Couchman, H. M. P. A superbubble feedback model for galaxy simulations. Mon. Not. R. Astron. Soc. 442, 3013–3025 (2014).

    ADS  Article  Google Scholar 

  50. Agertz, O., Kravtsov, A. V., Leitner, S. N. & Gnedin, N. Y. Toward a complete accounting of energy and momentum from stellar feedback in galaxy formation simulations. Astrophys. J. 770, 25 (2013).

    ADS  Article  Google Scholar 

  51. Aumer, M., White, S. D. M., Naab, T. & Scannapieco, C. Towards a more realistic population of bright spiral galaxies in cosmological simulations. Mon. Not. R. Astron. Soc. 434, 3142–3164 (2013).

    ADS  Article  Google Scholar 

  52. Salem, M., Bryan, G. L. & Hummels, C. Cosmological simulations of galaxy formation with cosmic rays. Astrophys. J. Lett. 797, L18 (2014).

    ADS  Article  Google Scholar 

  53. Núñez, A. et al. Modeling for stellar feedback in galaxy formation simulations. Astrophys. J. 836, 204 (2017).

    ADS  Article  Google Scholar 

  54. Anglés-Alcázar, D. et al. Black holes on FIRE: stellar feedback limits early feeding of galactic nuclei. Mon. Not. R. Astron. Soc. 472, L109–L114 (2017).

    ADS  Article  Google Scholar 

  55. Weinberger, R., Ehlert, K., Pfrommer, C., Pakmor, R. & Springel, V. Simulating the interaction of jets with the intracluster medium. Mon. Not. R. Astron. Soc. 470, 4530–4546 (2017).

    ADS  Article  Google Scholar 

  56. Leitherer, C. et al. Starburst99: Synthesis models for galaxies with active star formation. Astrophys. J. Supplement 123, 3–40 (1999).

    ADS  Article  Google Scholar 

  57. Muratov, A. L. et al. Gusty, gaseous flows of FIRE: galactic winds in cosmological simulations with explicit stellar feedback. Mon. Not. R. Astron. Soc. 454, 2691–2713 (2015).

    ADS  Article  Google Scholar 

  58. Kennicutt, R. C. Jr The global Schmidt law in star-forming galaxies. Astrophys. J. 498, 541–552 (1998).

    ADS  Article  Google Scholar 

  59. Davé, R., Finlator, K. & Oppenheimer, B. D. An analytic model for the evolution of the stellar, gas and metal content of galaxies. Mon. Not. R. Astron. Soc. 421, 98–107 (2012).

    ADS  Google Scholar 

  60. Governato, F. et al. Cuspy no more: how outflows affect the central dark matter and baryon distribution in Λ cold dark matter galaxies. Mon. Not. R. Astron. Soc. 422, 1231–1240 (2012).

    ADS  Article  Google Scholar 

  61. Teyssier, R., Pontzen, A., Dubois, Y. & Read, J. I. Cusp-core transformations in dwarf galaxies: observational predictions. Mon. Not. R. Astron. Soc. 429, 3068–3078 (2013).

    ADS  Article  Google Scholar 

  62. Domínguez, A. et al. Consequences of bursty star formation on galaxy observables at high redshifts. Mon. Not. R. Astron. Soc. 451, 839–848 (2015).

    ADS  Article  Google Scholar 

  63. Governato, F. et al. Bulgeless dwarf galaxies and dark matter cores from supernova-driven outflows. Nature 463, 203–206 (2010).

    ADS  Article  Google Scholar 

  64. Di Cintio, A. et al. The dependence of dark matter profiles on the stellar-to-halo mass ratio: a prediction for cusps versus cores. Mon. Not. R. Astron. Soc. 437, 415–423 (2014).

    ADS  Article  Google Scholar 

  65. Chan, T. K. et al. The impact of baryonic physics on the structure of dark matter haloes: the view from the FIRE cosmological simulations. Mon. Not. R. Astron. Soc. 454, 2981–3001 (2015).

    ADS  Article  Google Scholar 

  66. Vogelsberger, M., Zavala, J., Simpson, C. & Jenkins, A. Dwarf galaxies in CDM and SIDM with baryons: observational probes of the nature of dark matter. Mon. Not. R. Astron. Soc. 444, 3684–3698 (2014).

    ADS  Article  Google Scholar 

  67. Sawala, T. et al. The APOSTLE simulations: solutions to the Local Group’s cosmic puzzles. Mon. Not. R. Astron. Soc 457, 1931–1943 (2016).

    ADS  Article  Google Scholar 

  68. Gentile, G., Salucci, P., Klein, U., Vergani, D. & Kalberla, P. The cored distribution of dark matter in spiral galaxies. Mon. Not. R. Astron. Soc. 351, 903–922 (2004).

    ADS  Article  Google Scholar 

  69. de Blok, W. J. G. et al. High-resolution rotation curves and galaxy mass models from THINGS. Astron. J. 136, 2648–2719 (2008).

    ADS  Article  Google Scholar 

  70. Oman, K. A. et al. Apparent cores and non-circular motions in the HI discs of simulated galaxies. Preprint at https://arxiv.org/abs/1706.07478 (2017).

  71. Magorrian, J. et al. The demography of massive dark objects in galaxy centers. Astron. J. 115, 2285–2305 (1998).

    ADS  Article  Google Scholar 

  72. Habouzit, M., Volonteri, M. & Dubois, Y. Blossoms from black hole seeds: properties and early growth regulated by supernova feedback. Mon. Not. R. Astron. Soc. 468, 3935–3948 (2017).

    ADS  Article  Google Scholar 

  73. Faucher-Giguère, C.-A. A model for the origin of bursty star formation in galaxies. Mon. Not. R. Astron. Soc. 473, 3717–3731 (2018).

    ADS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claude-André Faucher-Giguère.

Ethics declarations

Competing interests

The author declares no competing interests.

Additional information

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Faucher-Giguère, CA. Recent progress in simulating galaxy formation from the largest to the smallest scales. Nat Astron 2, 368–373 (2018). https://doi.org/10.1038/s41550-018-0427-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-018-0427-y

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing