Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A fast-evolving luminous transient discovered by K2/Kepler

Abstract

For decades, optical time-domain searches have been tuned to find ordinary supernovae, which rise and fall in brightness over a period of weeks. Recently, supernova searches have improved their cadences and a handful of fast-evolving luminous transients have been identified1,2,3,4,5. These have peak luminosities comparable to type Ia supernovae, but rise to maximum in less than ten days and fade from view in less than one month. Here we present the most extreme example of this class of object thus far: KSN 2015K, with a rise time of only 2.2 days and a time above half-maximum of only 6.8 days. We show that, unlike type Ia supernovae, the light curve of KSN 2015K was not powered by the decay of radioactive elements. We further argue that it is unlikely that it was powered by continuing energy deposition from a central remnant (a magnetar or black hole). Using numerical radiation hydrodynamical models, we show that the light curve of KSN 2015K is well fitted by a model where the supernova runs into external material presumably expelled in a pre-supernova mass-loss episode. The rapid rise of KSN 2015K therefore probes the venting of photons when a hypersonic shock wave breaks out of a dense extended medium.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: K2 light curve of KSN 2015K.
Fig. 2: KSN 2015K’s rise to maximum light.
Fig. 3: Light curve comparison.
Fig. 4: Peak luminosity versus rise time.

Similar content being viewed by others

References

  1. Poznanski, D. et al. An unusually fast-evolving supernova. Science 327, 58–60 (2010).

    Article  ADS  Google Scholar 

  2. Kasliwal, M. M. et al. Rapidly decaying supernova 2010X: a candidate “.Ia” explosion. Astrophys. J. 723, L98–L102 (2010).

    Article  ADS  Google Scholar 

  3. Drout, M. R. et al. Rapidly evolving and luminous transients from Pan-STARRS1. Astrophys. J. 794, 23 (2014).

    Article  ADS  Google Scholar 

  4. Shivvers, I. et al. SN 2015U: a rapidly evolving and luminous type Ibn supernova. Mon. Not. R. Astron. Soc. 461, 3057–3074 (2016).

    Article  ADS  Google Scholar 

  5. Arcavi, I. et al. Rapidly rising transients in the supernova—superluminous supernova gap. Astrophys. J. 819, 35 (2016).

    Article  ADS  Google Scholar 

  6. Howell, S. B. et al. The K2 mission: characterization and early results. Publ. Astron. Soc. Pac. 126, 398 (2014).

    Article  ADS  Google Scholar 

  7. Shen, K. J., Kasen, D., Weinberg, N. N., Bildsten, L. & Scannapieco, E. Thermonuclear .Ia supernovae from helium shell detonations: explosion models and observables. Astrophys. J. 715, 767–774 (2010).

    Article  ADS  Google Scholar 

  8. Dessart, L. et al. Multidimensional simulations of the accretion-induced collapse of white dwarfs to neutron stars. Astrophys. J. 644, 1063–1084 (2006).

    Article  ADS  Google Scholar 

  9. Darbha, S. et al. Nickel-rich outflows produced by the accretion-induced collapse of white dwarfs: light curves and spectra. Mon. Not. R. Astron. Soc. 409, 846–854 (2010).

    Article  ADS  Google Scholar 

  10. Abbott, B. P. et al. Multi-messenger observations of a binary neutron star merger. Astrophys. J. 848, L12 (2017).

    Article  ADS  Google Scholar 

  11. Villar, V. A. et al. The combined ultraviolet, optical, and near-infrared light curves of the kilonova associated with the binary neutron star merger GW170817: unified data set, analytic models, and physical implications. Astrophys. J. 851, L21 (2017).

    Article  ADS  Google Scholar 

  12. Tauris, T. M., Langer, N. & Podsiadlowski, P. Ultra-stripped supernovae: progenitors and fate. Mon. Not. R. Astron. Soc. 451, 2123–2144 (2015).

    Article  ADS  Google Scholar 

  13. Moriya, T. et al. Fallback supernovae: a possible origin of peculiar supernovae with extremely low explosion energies. Astrophys. J. 719, 1445–1453 (2010).

    Article  ADS  Google Scholar 

  14. Kasen, D., Fernández, R. & Metzger, B. D. Kilonova light curves from the disc wind outflows of compact object mergers. Mon. Not. R. Astron. Soc. 450, 1777–1786 (2015).

    Article  ADS  Google Scholar 

  15. Moriya, T. J. et al. Light-curve and spectral properties of ultrastripped core-collapse supernovae leading to binary neutron stars. Mon. Not. R. Astron. Soc. 466, 2085–2098 (2017).

    Article  ADS  Google Scholar 

  16. Piro, A. L. & Thompson, T. A. The signature of single-degenerate accretion-induced collapse. Astrophys. J. 794, 28 (2014).

    Article  ADS  Google Scholar 

  17. Maeda, K. et al. The unique type Ib supernova 2005bf at nebular phases: a possible birth event of a strongly magnetized neutron star. Astrophys. J. 666, 1069–1082 (2007).

    Article  ADS  Google Scholar 

  18. Kasen, D. & Bildsten, L. Supernova light curves powered by young magnetars. Astrophys. J. 717, 245–249 (2010).

    Article  ADS  Google Scholar 

  19. Dexter, J. & Kasen, D. Supernova light curves powered by fallback accretion. Astrophys. J. 772, 30 (2013).

    Article  ADS  Google Scholar 

  20. Metzger, B. D., Vurm, I., Hascoët, R. & Beloborodov, A. M. Ionization break-out from millisecond pulsar wind nebulae: an X-ray probe of the origin of superluminous supernovae. Mon. Not. R. Astron. Soc. 437, 703–720 (2014).

    Article  ADS  Google Scholar 

  21. Chevalier, R. A. Neutron star accretion in a supernova. Astrophys. J. 346, 847–859 (1989).

    Article  ADS  Google Scholar 

  22. Stanek, K. Z. et al. Spectroscopic discovery of the supernova 2003dh associated with GRB 030329. Astrophys. J. 591, L17–L20 (2003).

    Article  ADS  Google Scholar 

  23. Chevalier, R. A. & Irwin, C. M. Shock breakout in dense mass loss: luminous supernovae. Astrophys. J. 729, L6 (2011).

    Article  ADS  Google Scholar 

  24. Balberg, S. & Loeb, A. Supernova shock breakout through a wind. Mon. Not. R. Astron. Soc. 414, 1715–1720 (2011).

    Article  ADS  Google Scholar 

  25. Ofek, E. O. et al. Supernova PTF 09UJ: a possible shock breakout from a dense circumstellar wind. Astrophys. J. 724, 1396–1401 (2010).

    Article  ADS  Google Scholar 

  26. Ginzburg, S. & Balberg, S. Light curves from supernova shock breakout through an extended wind. Astrophys. J. 780, 18 (2014).

    Article  ADS  Google Scholar 

  27. Kleiser, I. K. W. & Kasen, D. Rapidly fading supernovae from massive star explosions. Mon. Not. R. Astron. Soc. 438, 318–328 (2014).

    Article  ADS  Google Scholar 

  28. Dessart, L., Hillier, D. J., Waldman, R. & Livne, E. Type II-plateau supernova radiation: dependences on progenitor and explosion properties. Mon. Not. R. Astron. Soc. 433, 1745–1763 (2013).

    Article  ADS  Google Scholar 

  29. Moriya, T. J., Yoon, S.-C., Gräfener, G. & Blinnikov, S. I. Immediate dense circumstellar environment of supernova progenitors caused by wind acceleration: its effect on supernova light curves. Mon. Not. R. Astron. Soc. 469, L108–L112 (2017).

    Article  ADS  Google Scholar 

  30. Whitesides, L. et al. iPTF16asu: a luminous, rapidly-evolving, and high-velocity supernova. Preprint at https://arxiv.org/abs/1706.05018 (2017).

  31. Tanaka, M. et al. Rapidly rising transients from the Subaru Hyper Suprime-Cam transient survey. Astrophys. J. 819, 5 (2016).

    Article  ADS  Google Scholar 

  32. Almgren, A. S. et al. CASTRO: a new compressible astrophysical solver. I. Hydrodynamics and self-gravity. Astrophys. J. 715, 1221–1238 (2010).

    Article  ADS  Google Scholar 

  33. Zhang, W., Howell, L., Almgren, A., Burrows, A. & Bell, J. CASTRO: a new compressible astrophysical solver. II. Gray radiation hydrodynamics. Astrophys. J. Suppl. 196, 20 (2011).

    Article  ADS  Google Scholar 

  34. Kasen, D., Metzger, B. D. & Bildsten, L. Magnetar-driven shock breakout and double-peaked supernova light curves. Astrophys. J. 821, 36 (2016).

    Article  ADS  Google Scholar 

  35. Stanek, K. Z., Garnavich, P. M., Kaluzny, J., Pych, W. & Thompson, I. BVRI observations of the optical afterglow of GRB 990510. Astrophys. J. 522, L39–L42 (1999).

    Article  ADS  Google Scholar 

  36. Rhoads, J. E. The dynamics and light curves of beamed gamma-ray burst afterglows. Astrophys. J. 525, 737–749 (1999).

    Article  ADS  Google Scholar 

  37. Granot, J., Panaitescu, A., Kumar, P. & Woosley, S. E. Off-axis afterglow emission from jetted gamma-ray bursts. Astrophys. J. 570, L61–L64 (2002).

    Article  ADS  Google Scholar 

  38. Totani, T. & Panaitescu, A. Orphan afterglows of collimated gamma-ray bursts: rate predictions and prospects for detection. Astrophys. J. 576, 120–134 (2002).

    Article  ADS  Google Scholar 

  39. Grieco, V. et al. Metallicity effects on cosmic type Ib/c supernovae and gamma-ray burst rates. Mon. Not. R. Astron. Soc. 423, 3049–3057 (2012).

    Article  ADS  Google Scholar 

  40. Prieto, J. L., Stanek, K. Z. & Beacom, J. F. Characterizing supernova progenitors via the metallicities of their host galaxies, from poor dwarfs to rich spirals. Astrophys. J. 673, 999–1008 (2008).

    Article  ADS  Google Scholar 

  41. Tomczak, A. R. et al. Galaxy stellar mass functions from ZFOURGE/CANDELS: an excess of low-mass galaxies since z = 2 and the rapid buildup of quiescent galaxies. Astrophys. J. 783, 85 (2014).

    Article  ADS  Google Scholar 

  42. Mannucci, F. et al. The supernova rate per unit mass. Astron. Astrophys. 433, 807–814 (2005).

    Article  ADS  Google Scholar 

  43. Kochanek, C. S. et al. The K-band galaxy luminosity function. Astrophys. J. 560, 566–579 (2001).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is partially supported by NASA K2 cycle 4 grant NNH15ZDA001N and cycle 5 grant NNX17AI64G. We acknowledge support from the Australian Research Council Centre of Excellence for All-sky Astrophysics through project number CE110001020.

Author information

Authors and Affiliations

Authors

Contributions

A.R., P.M.G., B.E.T. and D. Kasen contributed to the scientific analysis. D. Khatami compared the data with theoretical models. E.J.S. discovered the KSN 2015K event and, along with R.P.O. and R.M., reduced the K2 light curve data. A.Z., G.S., D.J. and R.C.S. obtained and reduced the DECam data. S.M. and B.E.T. obtained and reduced the spectra. F.F. and V.A.V. contributed the light-curve fitting. All authors contributed to the scientific text.

Corresponding author

Correspondence to A. Rest.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–3

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rest, A., Garnavich, P.M., Khatami, D. et al. A fast-evolving luminous transient discovered by K2/Kepler. Nat Astron 2, 307–311 (2018). https://doi.org/10.1038/s41550-018-0423-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-018-0423-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing