Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A fast-evolving luminous transient discovered by K2/Kepler


For decades, optical time-domain searches have been tuned to find ordinary supernovae, which rise and fall in brightness over a period of weeks. Recently, supernova searches have improved their cadences and a handful of fast-evolving luminous transients have been identified1,2,3,4,5. These have peak luminosities comparable to type Ia supernovae, but rise to maximum in less than ten days and fade from view in less than one month. Here we present the most extreme example of this class of object thus far: KSN 2015K, with a rise time of only 2.2 days and a time above half-maximum of only 6.8 days. We show that, unlike type Ia supernovae, the light curve of KSN 2015K was not powered by the decay of radioactive elements. We further argue that it is unlikely that it was powered by continuing energy deposition from a central remnant (a magnetar or black hole). Using numerical radiation hydrodynamical models, we show that the light curve of KSN 2015K is well fitted by a model where the supernova runs into external material presumably expelled in a pre-supernova mass-loss episode. The rapid rise of KSN 2015K therefore probes the venting of photons when a hypersonic shock wave breaks out of a dense extended medium.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: K2 light curve of KSN 2015K.
Fig. 2: KSN 2015K’s rise to maximum light.
Fig. 3: Light curve comparison.
Fig. 4: Peak luminosity versus rise time.


  1. 1.

    Poznanski, D. et al. An unusually fast-evolving supernova. Science 327, 58–60 (2010).

    ADS  Article  Google Scholar 

  2. 2.

    Kasliwal, M. M. et al. Rapidly decaying supernova 2010X: a candidate “.Ia” explosion. Astrophys. J. 723, L98–L102 (2010).

    ADS  Article  Google Scholar 

  3. 3.

    Drout, M. R. et al. Rapidly evolving and luminous transients from Pan-STARRS1. Astrophys. J. 794, 23 (2014).

    ADS  Article  Google Scholar 

  4. 4.

    Shivvers, I. et al. SN 2015U: a rapidly evolving and luminous type Ibn supernova. Mon. Not. R. Astron. Soc. 461, 3057–3074 (2016).

    ADS  Article  Google Scholar 

  5. 5.

    Arcavi, I. et al. Rapidly rising transients in the supernova—superluminous supernova gap. Astrophys. J. 819, 35 (2016).

    ADS  Article  Google Scholar 

  6. 6.

    Howell, S. B. et al. The K2 mission: characterization and early results. Publ. Astron. Soc. Pac. 126, 398 (2014).

    ADS  Article  Google Scholar 

  7. 7.

    Shen, K. J., Kasen, D., Weinberg, N. N., Bildsten, L. & Scannapieco, E. Thermonuclear .Ia supernovae from helium shell detonations: explosion models and observables. Astrophys. J. 715, 767–774 (2010).

    ADS  Article  Google Scholar 

  8. 8.

    Dessart, L. et al. Multidimensional simulations of the accretion-induced collapse of white dwarfs to neutron stars. Astrophys. J. 644, 1063–1084 (2006).

    ADS  Article  Google Scholar 

  9. 9.

    Darbha, S. et al. Nickel-rich outflows produced by the accretion-induced collapse of white dwarfs: light curves and spectra. Mon. Not. R. Astron. Soc. 409, 846–854 (2010).

    ADS  Article  Google Scholar 

  10. 10.

    Abbott, B. P. et al. Multi-messenger observations of a binary neutron star merger. Astrophys. J. 848, L12 (2017).

    ADS  Article  Google Scholar 

  11. 11.

    Villar, V. A. et al. The combined ultraviolet, optical, and near-infrared light curves of the kilonova associated with the binary neutron star merger GW170817: unified data set, analytic models, and physical implications. Astrophys. J. 851, L21 (2017).

    ADS  Article  Google Scholar 

  12. 12.

    Tauris, T. M., Langer, N. & Podsiadlowski, P. Ultra-stripped supernovae: progenitors and fate. Mon. Not. R. Astron. Soc. 451, 2123–2144 (2015).

    ADS  Article  Google Scholar 

  13. 13.

    Moriya, T. et al. Fallback supernovae: a possible origin of peculiar supernovae with extremely low explosion energies. Astrophys. J. 719, 1445–1453 (2010).

    ADS  Article  Google Scholar 

  14. 14.

    Kasen, D., Fernández, R. & Metzger, B. D. Kilonova light curves from the disc wind outflows of compact object mergers. Mon. Not. R. Astron. Soc. 450, 1777–1786 (2015).

    ADS  Article  Google Scholar 

  15. 15.

    Moriya, T. J. et al. Light-curve and spectral properties of ultrastripped core-collapse supernovae leading to binary neutron stars. Mon. Not. R. Astron. Soc. 466, 2085–2098 (2017).

    ADS  Article  Google Scholar 

  16. 16.

    Piro, A. L. & Thompson, T. A. The signature of single-degenerate accretion-induced collapse. Astrophys. J. 794, 28 (2014).

    ADS  Article  Google Scholar 

  17. 17.

    Maeda, K. et al. The unique type Ib supernova 2005bf at nebular phases: a possible birth event of a strongly magnetized neutron star. Astrophys. J. 666, 1069–1082 (2007).

    ADS  Article  Google Scholar 

  18. 18.

    Kasen, D. & Bildsten, L. Supernova light curves powered by young magnetars. Astrophys. J. 717, 245–249 (2010).

    ADS  Article  Google Scholar 

  19. 19.

    Dexter, J. & Kasen, D. Supernova light curves powered by fallback accretion. Astrophys. J. 772, 30 (2013).

    ADS  Article  Google Scholar 

  20. 20.

    Metzger, B. D., Vurm, I., Hascoët, R. & Beloborodov, A. M. Ionization break-out from millisecond pulsar wind nebulae: an X-ray probe of the origin of superluminous supernovae. Mon. Not. R. Astron. Soc. 437, 703–720 (2014).

    ADS  Article  Google Scholar 

  21. 21.

    Chevalier, R. A. Neutron star accretion in a supernova. Astrophys. J. 346, 847–859 (1989).

    ADS  Article  Google Scholar 

  22. 22.

    Stanek, K. Z. et al. Spectroscopic discovery of the supernova 2003dh associated with GRB 030329. Astrophys. J. 591, L17–L20 (2003).

    ADS  Article  Google Scholar 

  23. 23.

    Chevalier, R. A. & Irwin, C. M. Shock breakout in dense mass loss: luminous supernovae. Astrophys. J. 729, L6 (2011).

    ADS  Article  Google Scholar 

  24. 24.

    Balberg, S. & Loeb, A. Supernova shock breakout through a wind. Mon. Not. R. Astron. Soc. 414, 1715–1720 (2011).

    ADS  Article  Google Scholar 

  25. 25.

    Ofek, E. O. et al. Supernova PTF 09UJ: a possible shock breakout from a dense circumstellar wind. Astrophys. J. 724, 1396–1401 (2010).

    ADS  Article  Google Scholar 

  26. 26.

    Ginzburg, S. & Balberg, S. Light curves from supernova shock breakout through an extended wind. Astrophys. J. 780, 18 (2014).

    ADS  Article  Google Scholar 

  27. 27.

    Kleiser, I. K. W. & Kasen, D. Rapidly fading supernovae from massive star explosions. Mon. Not. R. Astron. Soc. 438, 318–328 (2014).

    ADS  Article  Google Scholar 

  28. 28.

    Dessart, L., Hillier, D. J., Waldman, R. & Livne, E. Type II-plateau supernova radiation: dependences on progenitor and explosion properties. Mon. Not. R. Astron. Soc. 433, 1745–1763 (2013).

    ADS  Article  Google Scholar 

  29. 29.

    Moriya, T. J., Yoon, S.-C., Gräfener, G. & Blinnikov, S. I. Immediate dense circumstellar environment of supernova progenitors caused by wind acceleration: its effect on supernova light curves. Mon. Not. R. Astron. Soc. 469, L108–L112 (2017).

    ADS  Article  Google Scholar 

  30. 30.

    Whitesides, L. et al. iPTF16asu: a luminous, rapidly-evolving, and high-velocity supernova. Preprint at (2017).

  31. 31.

    Tanaka, M. et al. Rapidly rising transients from the Subaru Hyper Suprime-Cam transient survey. Astrophys. J. 819, 5 (2016).

    ADS  Article  Google Scholar 

  32. 32.

    Almgren, A. S. et al. CASTRO: a new compressible astrophysical solver. I. Hydrodynamics and self-gravity. Astrophys. J. 715, 1221–1238 (2010).

    ADS  Article  Google Scholar 

  33. 33.

    Zhang, W., Howell, L., Almgren, A., Burrows, A. & Bell, J. CASTRO: a new compressible astrophysical solver. II. Gray radiation hydrodynamics. Astrophys. J. Suppl. 196, 20 (2011).

    ADS  Article  Google Scholar 

  34. 34.

    Kasen, D., Metzger, B. D. & Bildsten, L. Magnetar-driven shock breakout and double-peaked supernova light curves. Astrophys. J. 821, 36 (2016).

    ADS  Article  Google Scholar 

  35. 35.

    Stanek, K. Z., Garnavich, P. M., Kaluzny, J., Pych, W. & Thompson, I. BVRI observations of the optical afterglow of GRB 990510. Astrophys. J. 522, L39–L42 (1999).

    ADS  Article  Google Scholar 

  36. 36.

    Rhoads, J. E. The dynamics and light curves of beamed gamma-ray burst afterglows. Astrophys. J. 525, 737–749 (1999).

    ADS  Article  Google Scholar 

  37. 37.

    Granot, J., Panaitescu, A., Kumar, P. & Woosley, S. E. Off-axis afterglow emission from jetted gamma-ray bursts. Astrophys. J. 570, L61–L64 (2002).

    ADS  Article  Google Scholar 

  38. 38.

    Totani, T. & Panaitescu, A. Orphan afterglows of collimated gamma-ray bursts: rate predictions and prospects for detection. Astrophys. J. 576, 120–134 (2002).

    ADS  Article  Google Scholar 

  39. 39.

    Grieco, V. et al. Metallicity effects on cosmic type Ib/c supernovae and gamma-ray burst rates. Mon. Not. R. Astron. Soc. 423, 3049–3057 (2012).

    ADS  Article  Google Scholar 

  40. 40.

    Prieto, J. L., Stanek, K. Z. & Beacom, J. F. Characterizing supernova progenitors via the metallicities of their host galaxies, from poor dwarfs to rich spirals. Astrophys. J. 673, 999–1008 (2008).

    ADS  Article  Google Scholar 

  41. 41.

    Tomczak, A. R. et al. Galaxy stellar mass functions from ZFOURGE/CANDELS: an excess of low-mass galaxies since z = 2 and the rapid buildup of quiescent galaxies. Astrophys. J. 783, 85 (2014).

    ADS  Article  Google Scholar 

  42. 42.

    Mannucci, F. et al. The supernova rate per unit mass. Astron. Astrophys. 433, 807–814 (2005).

    ADS  Article  Google Scholar 

  43. 43.

    Kochanek, C. S. et al. The K-band galaxy luminosity function. Astrophys. J. 560, 566–579 (2001).

    ADS  Article  Google Scholar 

Download references


This work is partially supported by NASA K2 cycle 4 grant NNH15ZDA001N and cycle 5 grant NNX17AI64G. We acknowledge support from the Australian Research Council Centre of Excellence for All-sky Astrophysics through project number CE110001020.

Author information




A.R., P.M.G., B.E.T. and D. Kasen contributed to the scientific analysis. D. Khatami compared the data with theoretical models. E.J.S. discovered the KSN 2015K event and, along with R.P.O. and R.M., reduced the K2 light curve data. A.Z., G.S., D.J. and R.C.S. obtained and reduced the DECam data. S.M. and B.E.T. obtained and reduced the spectra. F.F. and V.A.V. contributed the light-curve fitting. All authors contributed to the scientific text.

Corresponding author

Correspondence to A. Rest.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–3

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rest, A., Garnavich, P.M., Khatami, D. et al. A fast-evolving luminous transient discovered by K2/Kepler. Nat Astron 2, 307–311 (2018).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing