A fast-evolving luminous transient discovered by K2/Kepler

  • Nature Astronomyvolume 2pages307311 (2018)
  • doi:10.1038/s41550-018-0423-2
  • Download Citation
Published online:


For decades, optical time-domain searches have been tuned to find ordinary supernovae, which rise and fall in brightness over a period of weeks. Recently, supernova searches have improved their cadences and a handful of fast-evolving luminous transients have been identified1,2,3,4,5. These have peak luminosities comparable to type Ia supernovae, but rise to maximum in less than ten days and fade from view in less than one month. Here we present the most extreme example of this class of object thus far: KSN 2015K, with a rise time of only 2.2 days and a time above half-maximum of only 6.8 days. We show that, unlike type Ia supernovae, the light curve of KSN 2015K was not powered by the decay of radioactive elements. We further argue that it is unlikely that it was powered by continuing energy deposition from a central remnant (a magnetar or black hole). Using numerical radiation hydrodynamical models, we show that the light curve of KSN 2015K is well fitted by a model where the supernova runs into external material presumably expelled in a pre-supernova mass-loss episode. The rapid rise of KSN 2015K therefore probes the venting of photons when a hypersonic shock wave breaks out of a dense extended medium.

  • Subscribe to Nature Astronomy for full access:



Additional access options:

Already a subscriber?  Log in  now or  Register  for online access.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Poznanski, D. et al. An unusually fast-evolving supernova. Science 327, 58–60 (2010).

  2. 2.

    Kasliwal, M. M. et al. Rapidly decaying supernova 2010X: a candidate “.Ia” explosion. Astrophys. J. 723, L98–L102 (2010).

  3. 3.

    Drout, M. R. et al. Rapidly evolving and luminous transients from Pan-STARRS1. Astrophys. J. 794, 23 (2014).

  4. 4.

    Shivvers, I. et al. SN 2015U: a rapidly evolving and luminous type Ibn supernova. Mon. Not. R. Astron. Soc. 461, 3057–3074 (2016).

  5. 5.

    Arcavi, I. et al. Rapidly rising transients in the supernova—superluminous supernova gap. Astrophys. J. 819, 35 (2016).

  6. 6.

    Howell, S. B. et al. The K2 mission: characterization and early results. Publ. Astron. Soc. Pac. 126, 398 (2014).

  7. 7.

    Shen, K. J., Kasen, D., Weinberg, N. N., Bildsten, L. & Scannapieco, E. Thermonuclear .Ia supernovae from helium shell detonations: explosion models and observables. Astrophys. J. 715, 767–774 (2010).

  8. 8.

    Dessart, L. et al. Multidimensional simulations of the accretion-induced collapse of white dwarfs to neutron stars. Astrophys. J. 644, 1063–1084 (2006).

  9. 9.

    Darbha, S. et al. Nickel-rich outflows produced by the accretion-induced collapse of white dwarfs: light curves and spectra. Mon. Not. R. Astron. Soc. 409, 846–854 (2010).

  10. 10.

    Abbott, B. P. et al. Multi-messenger observations of a binary neutron star merger. Astrophys. J. 848, L12 (2017).

  11. 11.

    Villar, V. A. et al. The combined ultraviolet, optical, and near-infrared light curves of the kilonova associated with the binary neutron star merger GW170817: unified data set, analytic models, and physical implications. Astrophys. J. 851, L21 (2017).

  12. 12.

    Tauris, T. M., Langer, N. & Podsiadlowski, P. Ultra-stripped supernovae: progenitors and fate. Mon. Not. R. Astron. Soc. 451, 2123–2144 (2015).

  13. 13.

    Moriya, T. et al. Fallback supernovae: a possible origin of peculiar supernovae with extremely low explosion energies. Astrophys. J. 719, 1445–1453 (2010).

  14. 14.

    Kasen, D., Fernández, R. & Metzger, B. D. Kilonova light curves from the disc wind outflows of compact object mergers. Mon. Not. R. Astron. Soc. 450, 1777–1786 (2015).

  15. 15.

    Moriya, T. J. et al. Light-curve and spectral properties of ultrastripped core-collapse supernovae leading to binary neutron stars. Mon. Not. R. Astron. Soc. 466, 2085–2098 (2017).

  16. 16.

    Piro, A. L. & Thompson, T. A. The signature of single-degenerate accretion-induced collapse. Astrophys. J. 794, 28 (2014).

  17. 17.

    Maeda, K. et al. The unique type Ib supernova 2005bf at nebular phases: a possible birth event of a strongly magnetized neutron star. Astrophys. J. 666, 1069–1082 (2007).

  18. 18.

    Kasen, D. & Bildsten, L. Supernova light curves powered by young magnetars. Astrophys. J. 717, 245–249 (2010).

  19. 19.

    Dexter, J. & Kasen, D. Supernova light curves powered by fallback accretion. Astrophys. J. 772, 30 (2013).

  20. 20.

    Metzger, B. D., Vurm, I., Hascoët, R. & Beloborodov, A. M. Ionization break-out from millisecond pulsar wind nebulae: an X-ray probe of the origin of superluminous supernovae. Mon. Not. R. Astron. Soc. 437, 703–720 (2014).

  21. 21.

    Chevalier, R. A. Neutron star accretion in a supernova. Astrophys. J. 346, 847–859 (1989).

  22. 22.

    Stanek, K. Z. et al. Spectroscopic discovery of the supernova 2003dh associated with GRB 030329. Astrophys. J. 591, L17–L20 (2003).

  23. 23.

    Chevalier, R. A. & Irwin, C. M. Shock breakout in dense mass loss: luminous supernovae. Astrophys. J. 729, L6 (2011).

  24. 24.

    Balberg, S. & Loeb, A. Supernova shock breakout through a wind. Mon. Not. R. Astron. Soc. 414, 1715–1720 (2011).

  25. 25.

    Ofek, E. O. et al. Supernova PTF 09UJ: a possible shock breakout from a dense circumstellar wind. Astrophys. J. 724, 1396–1401 (2010).

  26. 26.

    Ginzburg, S. & Balberg, S. Light curves from supernova shock breakout through an extended wind. Astrophys. J. 780, 18 (2014).

  27. 27.

    Kleiser, I. K. W. & Kasen, D. Rapidly fading supernovae from massive star explosions. Mon. Not. R. Astron. Soc. 438, 318–328 (2014).

  28. 28.

    Dessart, L., Hillier, D. J., Waldman, R. & Livne, E. Type II-plateau supernova radiation: dependences on progenitor and explosion properties. Mon. Not. R. Astron. Soc. 433, 1745–1763 (2013).

  29. 29.

    Moriya, T. J., Yoon, S.-C., Gräfener, G. & Blinnikov, S. I. Immediate dense circumstellar environment of supernova progenitors caused by wind acceleration: its effect on supernova light curves. Mon. Not. R. Astron. Soc. 469, L108–L112 (2017).

  30. 30.

    Whitesides, L. et al. iPTF16asu: a luminous, rapidly-evolving, and high-velocity supernova. Preprint at https://arxiv.org/abs/1706.05018 (2017).

  31. 31.

    Tanaka, M. et al. Rapidly rising transients from the Subaru Hyper Suprime-Cam transient survey. Astrophys. J. 819, 5 (2016).

  32. 32.

    Almgren, A. S. et al. CASTRO: a new compressible astrophysical solver. I. Hydrodynamics and self-gravity. Astrophys. J. 715, 1221–1238 (2010).

  33. 33.

    Zhang, W., Howell, L., Almgren, A., Burrows, A. & Bell, J. CASTRO: a new compressible astrophysical solver. II. Gray radiation hydrodynamics. Astrophys. J. Suppl. 196, 20 (2011).

  34. 34.

    Kasen, D., Metzger, B. D. & Bildsten, L. Magnetar-driven shock breakout and double-peaked supernova light curves. Astrophys. J. 821, 36 (2016).

  35. 35.

    Stanek, K. Z., Garnavich, P. M., Kaluzny, J., Pych, W. & Thompson, I. BVRI observations of the optical afterglow of GRB 990510. Astrophys. J. 522, L39–L42 (1999).

  36. 36.

    Rhoads, J. E. The dynamics and light curves of beamed gamma-ray burst afterglows. Astrophys. J. 525, 737–749 (1999).

  37. 37.

    Granot, J., Panaitescu, A., Kumar, P. & Woosley, S. E. Off-axis afterglow emission from jetted gamma-ray bursts. Astrophys. J. 570, L61–L64 (2002).

  38. 38.

    Totani, T. & Panaitescu, A. Orphan afterglows of collimated gamma-ray bursts: rate predictions and prospects for detection. Astrophys. J. 576, 120–134 (2002).

  39. 39.

    Grieco, V. et al. Metallicity effects on cosmic type Ib/c supernovae and gamma-ray burst rates. Mon. Not. R. Astron. Soc. 423, 3049–3057 (2012).

  40. 40.

    Prieto, J. L., Stanek, K. Z. & Beacom, J. F. Characterizing supernova progenitors via the metallicities of their host galaxies, from poor dwarfs to rich spirals. Astrophys. J. 673, 999–1008 (2008).

  41. 41.

    Tomczak, A. R. et al. Galaxy stellar mass functions from ZFOURGE/CANDELS: an excess of low-mass galaxies since z = 2 and the rapid buildup of quiescent galaxies. Astrophys. J. 783, 85 (2014).

  42. 42.

    Mannucci, F. et al. The supernova rate per unit mass. Astron. Astrophys. 433, 807–814 (2005).

  43. 43.

    Kochanek, C. S. et al. The K-band galaxy luminosity function. Astrophys. J. 560, 566–579 (2001).

Download references


This work is partially supported by NASA K2 cycle 4 grant NNH15ZDA001N and cycle 5 grant NNX17AI64G. We acknowledge support from the Australian Research Council Centre of Excellence for All-sky Astrophysics through project number CE110001020.

Author information


  1. Space Telescope Science Institute, Baltimore, MD, USA

    • A. Rest
    •  & G. Strampelli
  2. Department of Physics, University of Notre Dame, Notre Dame, IN, USA

    • P. M. Garnavich
  3. Department of Astronomy, University of California, Berkeley, CA, USA

    • D. Khatami
    •  & D. Kasen
  4. Lawrence Berkeley National Laboratory, Berkeley, CA, USA

    • D. Khatami
    •  & D. Kasen
  5. The Research School of Astronomy and Astrophysics, Mount Stromlo Observatory, Australian National University, Canberra, Australian Capital Territory, Australia

    • B. E. Tucker
  6. Australian Research Council, Centre of Excellence for All-sky Astrophysics, Sydney, New South Wales, Australia

    • B. E. Tucker
  7. Astronomy Department, University of Maryland, College Park, MD, USA

    • E. J. Shaya
    • , R. P. Olling
    •  & R. Mushotzky
  8. Cerro Tololo Inter-American Observatory, La Serena, Chile

    • A. Zenteno
    •  & R. C. Smith
  9. Gemini Observatory, La Serena, Chile

    • S. Margheim
  10. Harvard–Smithsonian Center for Astrophysics, Cambridge, MA, USA

    • D. James
    •  & V. A. Villar
  11. Center for Mathematical Modeling, University of Chile, Santiago, Chile

    • F. Förster


  1. Search for A. Rest in:

  2. Search for P. M. Garnavich in:

  3. Search for D. Khatami in:

  4. Search for D. Kasen in:

  5. Search for B. E. Tucker in:

  6. Search for E. J. Shaya in:

  7. Search for R. P. Olling in:

  8. Search for R. Mushotzky in:

  9. Search for A. Zenteno in:

  10. Search for S. Margheim in:

  11. Search for G. Strampelli in:

  12. Search for D. James in:

  13. Search for R. C. Smith in:

  14. Search for F. Förster in:

  15. Search for V. A. Villar in:


A.R., P.M.G., B.E.T. and D. Kasen contributed to the scientific analysis. D. Khatami compared the data with theoretical models. E.J.S. discovered the KSN 2015K event and, along with R.P.O. and R.M., reduced the K2 light curve data. A.Z., G.S., D.J. and R.C.S. obtained and reduced the DECam data. S.M. and B.E.T. obtained and reduced the spectra. F.F. and V.A.V. contributed the light-curve fitting. All authors contributed to the scientific text.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to A. Rest.

Supplementary information

  1. Supplementary Information

    Supplementary Figures 1–3