An Earth-sized exoplanet with a Mercury-like composition


Earth, Venus, Mars and some extrasolar terrestrial planets1 have a mass and radius that is consistent with a mass fraction of about 30% metallic core and 70% silicate mantle2. At the inner frontier of the Solar System, Mercury has a completely different composition, with a mass fraction of about 70% metallic core and 30% silicate mantle3. Several formation or evolution scenarios are proposed to explain this metal-rich composition, such as a giant impact4, mantle evaporation5 or the depletion of silicate at the inner edge of the protoplanetary disk6. These scenarios are still strongly debated. Here, we report the discovery of a multiple transiting planetary system (K2-229) in which the inner planet has a radius of 1.165 ± 0.066 Earth radii and a mass of 2.59 ± 0.43 Earth masses. This Earth-sized planet thus has a core-mass fraction that is compatible with that of Mercury, although it was expected to be similar to that of Earth based on host-star chemistry7. This larger Mercury analogue either formed with a very peculiar composition or has evolved, for example, by losing part of its mantle. Further characterization of Mercury-like exoplanets such as K2-229 b will help to put the detailed in situ observations of Mercury (with MESSENGER and BepiColombo8) into the global context of the formation and evolution of solar and extrasolar terrestrial planets.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Photometric and RV data of the K2-229 system.
Fig. 2: Mass–radius diagram of known Earth-sized planets.
Fig. 3: Theoretical radii of dry terrestrial worlds as a function of their total mass and core-mass fraction (assuming no water) for the planet K2-229 b.


  1. 1.

    Dressing, C. D. et al. The mass of Kepler-93b and the composition of terrestrial planets. Astrophys. J. 800, 135 (2015).

    ADS  Article  Google Scholar 

  2. 2.

    Stacey, F. D. High pressure equations of state and planetary interiors. Rep. Prog. Phys. 68, 341 (2005).

    ADS  Article  Google Scholar 

  3. 3.

    Smith, D. E. et al. Gravity field and internal structure of Mercury from MESSENGER. Science 336, 214–217 (2012).

    ADS  Article  Google Scholar 

  4. 4.

    Benz, W., Anic, A., Horner, J. & Whitby, J. A. in Mercury (eds Balogh, A. et al.) 7–20 (Vol. 26, Space Sciences Series of ISSI, Springer, New York, USA, 2008).

  5. 5.

    Cameron, A. The partial volatilization of Mercury. Icarus 64, 285–294 (1985).

    ADS  Article  Google Scholar 

  6. 6.

    Wurm, G., Trieloff, M. & Rauer, H. Photophoretic separation of metals and silicates: the formation of Mercury-like planets and metal depletion in chondrites. Astrophys. J. 769, 78 (2013).

    ADS  Article  Google Scholar 

  7. 7.

    Thiabaud, A., Marboeuf, U., Alibert, Y., Leya, I. & Mezger, K. Elemental ratios in stars vs planets. Astron. Astrophys. 580, A30 (2015).

    ADS  Article  Google Scholar 

  8. 8.

    Benkhoff, J. et al. BepiColombo—comprehensive exploration of Mercury: mission overview and science goals. Planet. Space. Sci. 58, 2–20 (2010).

    ADS  Article  Google Scholar 

  9. 9.

    Barros, S., Demangeon, O. & Deleuil, M. New planetary and eclipsing binary candidates from campaigns 1–6 of the K2 mission. Astron. Astrophys. 594, A100 (2016).

    ADS  Article  Google Scholar 

  10. 10.

    Huber, D. et al. The K2 Ecliptic Plane Input Catalog (EPIC) and stellar classifications of 138,600 targets in campaigns 1–8. Astrophys. J. Suppl. Ser. 224, 2 (2016).

    ADS  Article  Google Scholar 

  11. 11.

    Santos, N. et al. SWEET-Cat: a catalogue of parameters for stars with exoplanets—I. new atmospheric parameters and masses for 48 stars with planets. Astron. Astrophys. 556, A150 (2013).

    Article  Google Scholar 

  12. 12.

    Dumusque, X., Boisse, I. & Santos, N. SOAP 2.0: a tool to estimate the photometric and radial velocity variations induced by stellar spots and plages. Astrophys. J. 796, 132 (2014).

    ADS  Article  Google Scholar 

  13. 13.

    Daz, R. F. et al. PASTIS: Bayesian extrasolar planet validation—I. general framework, models, and performance. Mon. Not. R. Astron. Soc. 441, 983–1004 (2014).

    ADS  Article  Google Scholar 

  14. 14.

    Dumusque, X. et al. Radial-velocity fitting challenge—II. first results of the analysis of the data set. Astron. Astrophys. 598, A133 (2017).

    Article  Google Scholar 

  15. 15.

    Pepe, F. et al. An Earth-sized planet with an Earth-like density. Nature 503, 377–380 (2013).

    ADS  Article  Google Scholar 

  16. 16.

    Berta-Thompson, Z. K. et al. A rocky planet transiting a nearby low-mass star. Nature 527, 204–207 (2015).

    ADS  Article  Google Scholar 

  17. 17.

    Gillon, M. et al. Seven temperate terrestrial planets around the nearby ultracool dwarf star TRAPPIST-1. Nature 542, 456–460 (2017).

    ADS  Article  Google Scholar 

  18. 18.

    Grimm, S. L. et al. The nature of the TRAPPIST-1 exoplanets. Preprint at (2018).

  19. 19.

    Brugger, B., Mousis, O., Deleuil, M. & Deschamps, F. Constraints on super-Earth interiors from stellar abundances. Astrophys. J. 850, 93 (2017).

    ADS  Article  Google Scholar 

  20. 20.

    Léger, A. et al. The extreme physical properties of the CoRoT-7b super-Earth. Icarus 213, 1–11 (2011).

    ADS  Article  Google Scholar 

  21. 21.

    Dittmann, J. A. et al. A temperate rocky super-Earth transiting a nearby cool star. Nature 544, 333–336 (2017).

    ADS  Article  Google Scholar 

  22. 22.

    Lanza, A. Star-planet magnetic interaction and evaporation of planetary atmospheres. Astron. Astrophys. 557, A31 (2013).

    ADS  Article  Google Scholar 

  23. 23.

    Strugarek, A. Assessing magnetic torques and energy fluxes in close-in star–planet systems. Astrophys. J. 833, 140 (2016).

    ADS  Article  Google Scholar 

  24. 24.

    Garraffo, C., Drake, J. J., Cohen, O., Alvarado-Gomez, J. D. & Moschou, S. P. The threatening environment of the TRAPPIST-1 planets. Preprint at (2017).

  25. 25.

    Mura, A. et al. Comet-like tail-formation of exospheres of hot rocky exoplanets: possible implications for CoRoT-7b. Icarus 211, 1–9 (2011).

    ADS  Article  Google Scholar 

  26. 26.

    Moutou, C., Donati, J.-F., Lin, D., Laine, R. & Hatzes, A. The magnetic properties of the star Kepler-78. Mon. Not. R. Astron. Soc. 459, 1993–2007 (2016).

    ADS  Article  Google Scholar 

  27. 27.

    Sinukoff, E. et al. K2-66b and K2-106b: two extremely hot sub-Neptune-size planets with high densities. Astron. J. 153, 271 (2017).

    ADS  Article  Google Scholar 

  28. 28.

    Guenther, E. et al. K2-106, a system containing a metal-rich planet and a planet of lower density. Preprint at (2017).

  29. 29.

    Dorn, C. et al. A generalized Bayesian inference method for constraining the interiors of super Earths and sub-Neptunes. Astron. Astrophys. 597, A37 (2017).

    Article  Google Scholar 

  30. 30.

    Rauer, H. et al. The PLATO 2.0 mission. Exp. Astron. 38, 249–330 (2014).

    ADS  Article  Google Scholar 

  31. 31.

    Kovács, G., Zucker, S. & Mazeh, T. A box-fitting algorithm in the search for periodic transits. Astron. Astrophys. 391, 369–377 (2002).

    ADS  Article  Google Scholar 

  32. 32.

    Armstrong, D. J., Pollacco, D. & Santerne, A. Transit shapes and self-organizing maps as a tool for ranking planetary candidates: application to Kepler and K2. Mon. Not. R. Astron. Soc. 465, 2634–2642 (2017).

    ADS  Article  Google Scholar 

  33. 33.

    Mayor, M. et al. Setting new standards with HARPS. The Messenger 114, 20–24 (2003).

    ADS  Google Scholar 

  34. 34.

    Baranne, A. et al. ELODIE: a spectrograph for accurate radial velocity measurements. Astron. Astrophys. Suppl. Ser. 119, 373–390 (1996).

    ADS  Article  Google Scholar 

  35. 35.

    Santerne, A. et al. PASTIS: Bayesian extrasolar planet validation—II. constraining exoplanet blend scenarios using spectroscopic diagnoses. Mon. Not. R. Astron. Soc. 451, 2337–2351 (2015).

    ADS  Article  Google Scholar 

  36. 36.

    Bouchy, F., Pepe, F. & Queloz, D. Fundamental photon noise limit to radial velocity measurements. Astron. Astrophys. 374, 733–739 (2001).

    ADS  Article  Google Scholar 

  37. 37.

    Gomes da Silva, J. et al. Long-term magnetic activity of a sample of M-dwarf stars from the HARPS program. I. Comparison of activity indices. Astron. Astrophys. 534, 30 (2011).

    Article  Google Scholar 

  38. 38.

    Noyes, R., Hartmann, L., Baliunas, S., Duncan, D. & Vaughan, A. Rotation, convection, and magnetic activity in lower main-sequence stars. Astrophys. J. 279, 763–777 (1984).

    ADS  Article  Google Scholar 

  39. 39.

    Sneden, C. Carbon and nitrogen abundances in metal-poor stars. Astrophys. J. 189, 493–507 (1974).

    ADS  Article  Google Scholar 

  40. 40.

    Kurucz, R. ATLAS9 Stellar Atmosphere Programs and 2 km/s Grid CD-ROM no. 13. (Smithsonian Astrophysical Observatory, 1993).

  41. 41.

    Sousa, S., Santos, N., Adibekyan, V., Delgado-Mena, E. & Israelian, G. ARES v2: new features and improved performance. Astron. Astrophys. 577, A67 (2015).

    ADS  Article  Google Scholar 

  42. 42.

    Mortier, A., Sousa, S., Adibekyan, V. Z., Brandão, I. & Santos, N. Correcting the spectroscopic surface gravity using transits and asteroseismology—no significant effect on temperatures or metallicities with ARES and MOOG in local thermodynamic equilibrium. Astron. Astrophys. 572, A95 (2014).

    ADS  Article  Google Scholar 

  43. 43.

    Adibekyan, V. Z. et al. Chemical abundances of 1111 FGK stars from the HARPS GTO planet search program—Galactic stellar populations and planets. Astron. Astrophys. 545, A32 (2012).

    Article  Google Scholar 

  44. 44.

    Delgado Mena, E. et al. Li depletion in solar analogues with exoplanets—extending the sample. Astron. Astrophys. 562, A92 (2014).

    Article  Google Scholar 

  45. 45.

    Maia, M. T. et al. The solar twin planet search—III. the [Y/Mg] clock: estimating stellar ages of solar-type stars. Astron. Astrophys. 590, A32 (2016).

    Article  Google Scholar 

  46. 46.

    Hormuth, F., Brandner, W., Hippler, S. & Henning, T. AstraLux—the Calar Alto 2.2-m telescope Lucky Imaging Camera. J. Phys. Conf. Ser. 131, 012051 (2008).

    Article  Google Scholar 

  47. 47.

    Lillo-Box, J., Barrado, D. & Bouy, H. High-resolution imaging of Kepler planet host candidates—a comprehensive comparison of different techniques. Astron. Astrophys. 566, A103 (2014).

    ADS  Article  Google Scholar 

  48. 48.

    Vanderburg, A. & Johnson, J. A. A technique for extracting highly precise photometry for the two-wheeled Kepler mission. Publ. Astron. Soc. Pac. 126, 948 (2014).

    ADS  Article  Google Scholar 

  49. 49.

    Rasmussen, C. E. & Williams, C. K. Gaussian Processes for Machine Learning Vol. 1 (MIT Press, Cambridge, MA, USA, 2006).

  50. 50.

    Henden, A. & Munari, U. The APASS all-sky, multi-epoch BVgri photometric survey. Contrib. Astron. Obs. S. 43, 518–522 (2014).

    ADS  Google Scholar 

  51. 51.

    Cutri, R. et al. AllWISE Data Release (Cutri+ 2013) (accessed 17 September 2017);

  52. 52.

    Southworth, J. Homogeneous studies of transiting extrasolar planets—I. light-curve analyses. Mon. Not. R. Astron. Soc. 386, 1644–1666 (2008).

    ADS  Article  Google Scholar 

  53. 53.

    Kipping, D. M. Binning is sinning: morphological light-curve distortions due to finite integration time. Mon. Not. R. Astron. Soc. 408, 1758–1769 (2010).

    ADS  Article  Google Scholar 

  54. 54.

    Allard, F., Homeier, D. & Freytag, B. Models of very-low-mass stars, brown dwarfs and exoplanets. Phil. Trans. R. Soc. A 370, 2765–2777 (2012).

    ADS  Article  Google Scholar 

  55. 55.

    Kipping, D. M. Characterizing distant worlds with asterodensity profiling. Mon. Not. R. Astron. Soc. 440, 2164–2184 (2014).

    ADS  Article  Google Scholar 

  56. 56.

    Dotter, A. et al. The Dartmouth Stellar Evolution Database. Astrophys. J. Suppl. Ser. 178, 89 (2008).

    ADS  Article  Google Scholar 

  57. 57.

    Bressan, A. et al. PARSEC: stellar tracks and isochrones with the PAdova and TRieste Stellar Evolution Code. Mon. Not. R. Astron. Soc. 427, 127–145 (2012).

    ADS  Article  Google Scholar 

  58. 58.

    Claret, A. & Bloemen, S. Gravity and limb-darkening coefficients for the Kepler, CoRoT, Spitzer, uvby, UBVRIJHK, and Sloan photometric systems. Astron. Astrophys. 529, A75 (2011).

    ADS  Article  Google Scholar 

  59. 59.

    Brooks, S., Giudici, P. & Philippe, A. Nonparametric convergence assessment for MCMC model selection. J. Comput. Graph. Stat. 12, 1–22 (2003).

    MathSciNet  Article  Google Scholar 

  60. 60.

    Santerne, A. et al. SOPHIE velocimetry of Kepler transit candidates—XII. KOI-1257 b: a highly eccentric three-month period transiting exoplanet. Astron. Astrophys. 571, A37 (2014).

    Article  Google Scholar 

  61. 61.

    Bayliss, D. et al. EPIC 201702477b: a transiting brown dwarf from K2 in a 41 day orbit. Astron. J. 153, 15 (2016).

    ADS  Article  Google Scholar 

  62. 62.

    Osborn, H. et al. K2-110 b: a massive mini-Neptune exoplanet. Astron. Astrophys. 604, A19 (2017).

    Article  Google Scholar 

  63. 63.

    Hatzes, A. P. et al. The mass of CoRoT-7b. Astrophys. J. 743, 75 (2011).

    ADS  Article  Google Scholar 

  64. 64.

    Haywood, R. et al. Planets and stellar activity: hide and seek in the CoRoT-7 system. Mon. Not. R. Astron. Soc. 443, 2517–2531 (2014).

    ADS  Article  Google Scholar 

  65. 65.

    Anglada-Escudé, G. & Tuomi, M. Comment on ‘stellar activity masquerading as planets in the habitable zone of the M dwarf Gliese 581’. Science 347, 1080 (2015).

    ADS  Article  Google Scholar 

  66. 66.

    Lissauer, J. J. et al. Validation of Kepler’s multiple planet candidates. II. Refined statistical framework and descriptions of systems of special interest. Astrophys. J. 784, 44 (2014).

    ADS  Article  Google Scholar 

  67. 67.

    Sotin, C., Grasset, O. & Mocquet, A. Mass–radius curve for extrasolar Earth-like planets and ocean planets. Icarus 191, 337–351 (2007).

    ADS  Article  Google Scholar 

  68. 68.

    Badro, J., Côté, A. S. & Brodholt, J. P. A seismologically consistent compositional model of Earth’s core. Proc. Natl Acad. Sci. USA 111, 7542–7545 (2014).

    ADS  Article  Google Scholar 

  69. 69.

    Lebrun, T. et al. Thermal evolution of an early magma ocean in interaction with the atmosphere. J. Geophys. Res.: Planets 118, 1155–1176 (2013).

    ADS  Article  Google Scholar 

  70. 70.

    Lodders, K. in Principles and Perspectives in Cosmochemistry (eds Goswami, A. & Reddy, B.) 379–417 (Astrophysics and Space Science Proc., Springer, Berlin, Germany, 2010).

  71. 71.

    Allègre, C. J., Poirier, J.-P., Humler, E. & Hofmann, A. W. The chemical composition of the Earth. Earth. Planet. Sci. Lett. 134, 515–526 (1995).

    ADS  Article  Google Scholar 

  72. 72.

    Grevesse, N., Asplund, M. & Sauval, A. The solar chemical composition. Space. Sci. Rev. 130, 105–114 (2007).

    ADS  Article  Google Scholar 

  73. 73.

    Asplund, M., Grevesse, N., Sauval, A. J. & Scott, P. The chemical composition of the Sun. Annu. Rev. Astron. Astrophys. 47, 481–522 (2009).

    ADS  Article  Google Scholar 

  74. 74.

    Owen, J. E. & Jackson, A. P. Planetary evaporation by UV and X-ray radiation: basic hydrodynamics. Mon. Not. R. Astron. Soc. 425, 2931–2947 (2012).

    ADS  Article  Google Scholar 

  75. 75.

    Pallavicini, R. et al. Relations among stellar X-ray emission observed from Einstein, stellar rotation and bolometric luminosity. Astrophys. J. 248, 279–290 (1981).

    ADS  Article  Google Scholar 

  76. 76.

    Ochsenbein, F., Bauer, P. & Marcout, J. The VizieR database of astronomical catalogues. Astron. Astrophys. Suppl. Ser. 143, 23–32 (2000).

    ADS  Article  Google Scholar 

Download references


We are grateful to the HARPS observers who conducted part of the visitor-mode observations at La Silla Observatory: R. I. Bustos, N. Astudillo, A. Wyttenbach, E. Linder, X. Bonfils, E. Hébrard and A. Suarez. A.S. thanks E. Hugot for comments on the manuscript. This publication is based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere under ESO programme 198.C-0168. This publication makes use of The Data & Analysis Center for Exoplanets (DACE), which is a facility based at the University of Geneva (CH) dedicated to extrasolar planet data visualization, exchange and analysis. DACE is a platform of the Swiss National Centre of Competence in Research (NCCR) PlanetS, federating the Swiss expertise in exoplanet research. The DACE platform is available at This research has made use of the NASA (National Aeronautics and Space Administration) Exoplanet Archive, which is operated by the California Institute of Technology, under contract with NASA under the Exoplanet Exploration Program. This research has made use of the VizieR catalogue access tool, CDS ( The original description of the VizieR service was published in ref. 76. This publication makes use of data products from the Two-Micron All-Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by NASA and the National Science Foundation. This publication makes use of data products from the Wide-field Infrared Survey Explorer, which is a joint project of the University of California, Los Angeles, and the Jet Propulsion Laboratory/California Institute of Technology, funded by NASA. The Porto group acknowledges support from Fundação para a Ciência e a Tecnologia (FCT) through national funds and from FEDER through COMPETE2020 by the grants UID/FIS/04434/2013 & POCI–01–0145-FEDER–007672, PTDC/FIS-AST/1526/2014 & POCI–01–0145-FEDER–016886 and PTDC/FIS-AST/7073/2014 & POCI-01-0145-FEDER-016880. FCT is further acknowledged through the Investigador FCT contracts IF/01312/2014/CP1215/CT0004 (S.C.C.B.), IF/00849/2015/CP1273/CT0003 (E.D.M.), IF/00650/2015/CP1273/CT0001 (V.A.), IF/01037/2013/CP1191/CT0001 (P.F.), IF/00169/2012/CP0150/CT0002 (N.C.S.) and IF/00028/2014/CP1215/CT0002 (S.G.S.) and for the fellowships SFRH/BD/93848/2013 (J.P.F.), PD/BD/128119/2016 (S.H.) and PD/BD/52700/2014 (J.J.N.), which are funded by FCT (Portugal) and POPH/FSE (EC). J.L.-B. acknowledges support from the Marie Curie Actions of the European Commission (FP7-COFUND). D.Bar. has been supported by the Spanish grant ESP2015-65712-C5-1-R. D.J.A. is funded under STFC consolidated grant reference ST/P000495/1. D.J.A.B. acknowledges support from the University of Warwick and the UKSA. E.F. is funded by the Qatar National Research Foundation (programme QNRF-NPRP-X-019-1). X.D. is grateful to the Society in Science–The Branco Weiss Fellowship for its financial support. R.L. thanks CNES for financial support through its postdoctoral programme. The project leading to this publication has received funding from Excellence Initiative of Aix-Marseille University–A*MIDEX, a French Investissements d’Avenir programme. The French group acknowledges financial support from the French Programme National de Planétologie (PNP, INSU). This work has been carried out in the frame of the NCCR PlanetS supported by the Swiss National Science Foundation (SNSF).

Author information




The Warwick group (D.J.A., D.J.A.B., A.D., F.F., E.F., J.J., G.K., J.K., K.W.F.L., T.L., J.McC., H.P.O., D.P.) detected the candidates. S.C.C.B., O.D. and M.D. reduced the POLAR–K2 light curves used in the candidate search. The Geneva group (D.Bay., F.B., R.F.D., X.D., H.Gi., C.L., F.P., S.U.) organized the HARPS runs, reduced the HARPS data and developed the DACE tool. A.S.B., S.G.S., D.J.A. and J.P.F. performed part of the visitor-mode runs on HARPS. M.H. derived the spectroscopic indices. V.A., E.D.M., N.C.S. and S.G.S. derived the stellar parameters and chemical composition of the star. J.L.-B. and D.Bar. performed the AstraLux observations and derived the background source confidence. H.Go. and A.S. performed the Bayesian analysis of the data with the PASTIS code that was initially developed by R.F.D., J.-M.A. and A.S. B.B., M.D., O.M. and A.A. developed the planet composition model and discussed the mantle evaporation. V.A., J.-M.A., D.Bar., S.C.C.B., D.Bay., I.B., A.S.B., F.B., D.J.A.B., M.D., E.D.M., O.D., J.P.F., P.F., H.Gi., G.H., S.H., R.L., C.L., J.J.N., H.P.O., F.P., D.P., N.C.S., S.G.S., S.U. and A.V. are co-investigators of the ESO–K2 large programme that is coordinated by A.S., who led the ESO proposal. A.S. led this study and wrote most of the manuscript. All authors contributed to the discussion of the paper.

Corresponding author

Correspondence to A. Santerne.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–7, Supplementary Tables 1–7

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Santerne, A., Brugger, B., Armstrong, D.J. et al. An Earth-sized exoplanet with a Mercury-like composition. Nat Astron 2, 393–400 (2018).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing