Abstract

A massive galaxy cluster can serve as a magnifying glass for distant stellar populations, as strong gravitational lensing magnifies background galaxies and exposes details that are otherwise undetectable. In time-domain astronomy, imaging programmes with a short cadence are able to detect rapidly evolving transients, previously unseen by surveys designed for slowly evolving supernovae. Here, we describe two unusual transient events discovered in a Hubble Space Telescope programme that combined these techniques with high-cadence imaging on a field with a strong-lensing galaxy cluster. These transients were faster and fainter than any supernovae, but substantially more luminous than a classical nova. We find that they can be explained as separate eruptions of a luminous blue variable star or a recurrent nova, or as an unrelated pair of stellar microlensing events. To distinguish between these hypotheses will require clarification of the cluster lens models, along with more high-cadence imaging of the field that could detect related transient episodes. This discovery suggests that the intersection of strong lensing with high-cadence transient surveys may be a fruitful path for future astrophysical transient studies.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Lotz, J. M. et al. The Frontier Fields: survey design and initial results. Astrophys. J. 837, 97–121 (2017).

  2. 2.

    Kasliwal, M. M. et al. Discovery of a new photometric sub-class of faint and fast classical novae. Astrophys. J. 735, 94–106 (2011).

  3. 3.

    Drout, M. R. et al. Rapidly evolving and luminous transients from Pan-STARRS1. Astrophys. J. 794, 23–46 (2014).

  4. 4.

    Berger, E. et al. A search for fast optical transients in the Pan-STARRS1 medium-deep survey: M-dwarf flares, asteroids, limits on extragalactic rates, and implications for LSST. Astrophys. J. 779, 18–29 (2013).

  5. 5.

    Tyson, J. A. Large Synoptic Survey Telescope: overview. In Proc. SPIE Vol. 4836 (eds Tyson, J. A. & Wolff, S.) 10–20 (SPIE, Bellingham, WA, USA, 2002).

  6. 6.

    Zitrin, A. et al. CLASH: the enhanced lensing efficiency of the highly elongated merging cluster MACS J0416.1-2403. Astrophys. J. Lett. 762, L30 (2013).

  7. 7.

    Jauzac, M. et al. Hubble Frontier Fields: a high-precision strong-lensing analysis of galaxy cluster MACSJ0416.1-2403 using 200 multiple images. Mon. Not. R. Astron. Soc. 443, 1549–1554 (2014).

  8. 8.

    Johnson, T. L. et al. Lens models and magnification maps of the six Hubble Frontier Fields clusters. Astrophys. J. 797, 48–79 (2014).

  9. 9.

    Richard, J. et al. Mass and magnification maps for the Hubble Space Telescope Frontier Fields clusters: implications for high-redshift studies. Mon. Not. R. Astron. Soc. 444, 268–289 (2014).

  10. 10.

    Diego, J. M. et al. A free-form lensing grid solution for A1689 with new multiple images. Mon. Not. R. Astron. Soc. 446, 683–704 (2015).

  11. 11.

    Grillo, C. et al. CLASH-VLT: insights on the mass substructures in the Frontier Fields cluster MACS J0416.1-2403 through accurate strong lens modeling. Astrophys. J. 800, 38–60 (2015).

  12. 12.

    Hoag, A. et al. The Grism Lens-Amplified Survey from Space (GLASS). VI. Comparing the mass and light in MACS J0416.1-2403 using Frontier Field imaging and GLASS spectroscopy. Astrophys. J. 831, 182–202 (2016).

  13. 13.

    Sebesta, K., Williams, L. L. R., Mohammed, I., Saha, P. & Liesenborgs, J. Testing light-traces-mass in Hubble Frontier Fields cluster MACS-J0416.1-2403. Mon. Not. R. Astron. Soc. 461, 2126–2134 (2016).

  14. 14.

    Caminha, G. B. et al. A refined mass distribution of the cluster MACS J0416.1-2403 from a new large set of spectroscopic multiply lensed sources. Astron. Astrophys. 600, A90 (2017).

  15. 15.

    Karoff, C. et al. Observational evidence for enhanced magnetic activity of superflare stars. Nat. Comm. 7, 11058–11067 (2016).

  16. 16.

    Kulkarni, S. R. et al. An unusually brilliant transient in the galaxy M85. Nature 447, 458–460 (2007).

  17. 17.

    Gal-Yam, A. Luminous supernovae. Science 337, 927–932 (2012).

  18. 18.

    Foley, R. J. et al. Type Iax supernovae: a new class of stellar explosion. Astrophys. J. 767, 57–85 (2013).

  19. 19.

    Kasliwal, M. M. et al. Calcium-rich gap transients in the remote outskirts of galaxies. Astrophys. J. 755, 161–175 (2012).

  20. 20.

    Li, L.-X. & Paczyński, B. Transient events from neutron star mergers. Astrophys. J. Lett. 507, L59–L62 (1998).

  21. 21.

    Tanvir, N. R. et al. A ‘kilonova’ associated with the short-duration γ-ray burst GRB 130603B. Nature 500, 547–549 (2013).

  22. 22.

    Abbott, B.-P. et al. GW170817: observation of gravitational waves from a binary neutron star inspiral. Phys. Rev. Lett. 119, 161101–161119 (2017).

  23. 23.

    Bildsten, L., Shen, K. J., Weinberg, N. N. & Nelemans, G. Faint thermonuclear supernovae from AM Canum Venaticorum binaries. Astrophys. J. Lett. 662, L95–L98 (2007).

  24. 24.

    Barnes, J. & Kasen, D. Effect of a high opacity on the light curves of radioactively powered transients from compact object mergers. Astrophys. J. 775, 18–27 (2013).

  25. 25.

    Kasen, D., Fernández, R. & Metzger, B. D. Kilonova light curves from the disc wind outflows of compact object mergers. Mon. Not. R. Astron. Soc. 450, 1777–1786 (2015).

  26. 26.

    Villar, V. A. et al. The combined ultraviolet, optical, and near-infrared light curves of the kilonova associated with the binary neutron star merger GW170817: unified data set, analytic models, and physical implications. Astrophys. J. Lett. 851, 21–33 (2017).

  27. 27.

    Shen, K. J., Kasen, D., Weinberg, N. N., Bildsten, L. & Scannapieco, E. Thermonuclear .Ia supernovae from helium shell detonations: explosion models and observables. Astrophys. J. 715, 767–774 (2010).

  28. 28.

    Fregeau, J. M., Cheung, P., Portegies Zwart, S. F. & Rasio, F. A. Stellar collisions during binary–binary and binary–single star interactions. Mon. Not. R. Astron. Soc. 352, 1–19 (2004).

  29. 29.

    Metzger, B. D., Giannios, D. & Spiegel, D. S. Optical and X-ray transients from planet–star mergers. Mon. Not. R. Astron. Soc. 425, 2778–2798 (2012).

  30. 30.

    Yamazaki, R., Hayasaki, K. & Loeb, A. Optical–infrared flares and radio afterglows by jovian planets inspiraling into their host stars. Mon. Not. R. Astron. Soc. 466, 1421–1427 (2017).

  31. 31.

    Di Stefano, R., Fisher, R., Guillochon, J. & Steiner, J. F. Death by dynamics: planetoid-induced explosions on white dwarfs. Preprint at https://arxiv.org/abs/1501.07837 (2015).

  32. 32.

    Smith, N., Li, W., Silverman, J. M., Ganeshalingam, M. & Filippenko, A. V. Luminous blue variable eruptions and related transients: diversity of progenitors and outburst properties. Mon. Not. R. Astron. Soc. 415, 773–810 (2011).

  33. 33.

    Kochanek, C. S., Szczygieł, D. M. & Stanek, K. Z. Unmasking the supernova impostors. Astrophys. J. 758, 142–173 (2012).

  34. 34.

    Maza, J. et al. Supernova 2009ip in NGC 7259. Central Bureau Electronic Telegrams 1928, 1 (2009).

  35. 35.

    Pastorello, A. et al. Interacting supernovae and supernova impostors: SN 2009ip, is this the end? Astrophys. J. 767, 1–19 (2013).

  36. 36.

    Pastorello, A. et al. Multiple major outbursts from a restless luminous blue variable in NGC 3432. Mon. Not. R. Astron. Soc. 408, 181–198 (2010).

  37. 37.

    Kilpatrick, C. D. et al. Connecting the progenitors, pre-explosion variability, and giant outbursts of luminous blue variables with Gaia16cfr. Mon. Not. R. Astron. Soc. 473, 4805–4823 (2018).

  38. 38.

    Pastorello, A. et al. Supernovae 2016bdu and 2005gl, and their link with SN 2009ip-like transients: another piece of the puzzle. Mon. Not. R. Astron. Soc. 474, 197–218 (2018).

  39. 39.

    Della Valle, M. & Livio, M. The calibration of novae as distance indicators. Astrophys. J. 452, 704–709 (1995).

  40. 40.

    Downes, R. A. & Duerbeck, H. W. Optical imaging of nova shells and the maximum magnitude-rate of decline relationship. Astron. J. 120, 2007–2037 (2000).

  41. 41.

    Schaefer, B. E. Comprehensive photometric histories of all known Galactic recurrent novae. Astrophys. J. Suppl. S. 187, 275–373 (2010).

  42. 42.

    Tang, S. et al. An accreting white dwarf near the Chandrasekhar limit in the Andromeda galaxy. Astrophys. J. 786, 61–68 (2014).

  43. 43.

    Darnley, M. J. et al. M31N 2008-12a—the remarkable recurrent nova in M31: panchromatic observations of the 2015 eruption. Astrophys. J. 833, 149–186 (2016).

  44. 44.

    Yaron, O., Prialnik, D., Shara, M. M. & Kovetz, A. An extended grid of nova models. II. The parameter space of nova outbursts. Astrophys. J. 623, 398–410 (2005).

  45. 45.

    Schneider, P. & Weiss, A. The two-point-mass lens—detailed investigation of a special asymmetric gravitational lens. Astron. Astrophys. 164, 237–259 (1986).

  46. 46.

    Miralda-Escudé, J. The magnification of stars crossing a caustic. I–Lenses with smooth potentials. Astrophys. J. 379, 94–98 (1991).

  47. 47.

    Lewis, G. F., Miralda-Escude, J., Richardson, D. C. & Wambsganss, J. Microlensing light curves—a new and efficient numerical method. Mon. Not. R. Astron. Soc. 261, 647–656 (1993).

  48. 48.

    Diego, J. M. et al. Dark matter under the microscope: constraining compact dark matter with caustic crossing events. Preprint at https://arxiv.org/abs/1706.10281 (2017).

  49. 49.

    Kelly, P. L. et al. An individual star at redshift 1.5 extremely magnified by a galaxy-cluster lens. Preprint at https://arxiv.org/abs/1706.10279 (2017).

  50. 50.

    Rodney, S. A. et al. Illuminating a dark lens: a type Ia supernova magnified by the Frontier Fields galaxy cluster Abell 2744. Astrophys. J. 811, 70–88 (2015).

  51. 51.

    Postman, M. et al. The Cluster Lensing And Supernova survey with Hubble: an overview. Astrophys. J. Suppl. S. 199, 25–47 (2012).

  52. 52.

    Jones, D. O., Scolnic, D. M. & Rodney, S. A. PythonPhot: simple DAOPHOT-type photometry in Python ascl:1501.010 (Astrophysics Source Code Library, 2015).

  53. 53.

    Vernet, J. et al. X-shooter, the new wide band intermediate resolution spectrograph at the ESO Very Large Telescope. Astron. Astrophys. 536, A105 (2011).

  54. 54.

    Benítez, N. Bayesian photometric redshift estimation. Astrophys. J. 536, 571–583 (2000).

  55. 55.

    Brammer, G. B., van Dokkum, P. G. & Coppi, P. EAZY: a fast, public photometric redshift code. Astrophys. J. 686, 1503–1513 (2008).

  56. 56.

    Le Fèvre, O. et al. Commissioning and performances of the VLT-VIMOS instrument. In Proc. SPIE Vol. 4841 (eds Iye, M. & Moorwood, A. F. M.) 1670–1681 (SPIE, Bellingham, WA, USA, 2003).

  57. 57.

    Rosati, P. et al. CLASH-VLT: a VIMOS large programme to map the dark matter mass distribution in galaxy clusters and probe distant lensed galaxies. The Messenger 158, 48–53 (2014).

  58. 58.

    Balestra, I. et al. CLASH-VLT: dissecting the Frontier Fields galaxy cluster MACS J0416.1-2403 with 800 spectra of member galaxies. Astrophys. J. Suppl. S. 224, 33–51 (2016).

  59. 59.

    Henault, F. et al. MUSE: a second-generation integral-field spectrograph for the VLT. In Proc. SPIE Vol. 4841 (eds Iye, M. & Moorwood, A. F. M.) 1096–1107 (SPIE, Bellingham, WA, USA, 2002).

  60. 60.

    Bacon, R. et al. News of the MUSE. The Messenger 147, 4–6 (2012).

  61. 61.

    Schmidt, K. B. et al. Through the looking GLASS: HST spectroscopy of faint galaxies lensed by the Frontier Fields cluster MACSJ0717.5+3745. Astrophys. J. Lett. 782, L36 (2014).

  62. 62.

    Treu, T. et al. The Grism Lens-Amplified Survey from Space (GLASS). I. Survey overview and first data release. Astrophys. J. 812, 114–134 (2015).

  63. 63.

    Jullo, E. et al. A Bayesian approach to strong lensing modelling of galaxy clusters. New. J. Phys. 9, 447–481 (2007).

  64. 64.

    Kassiola, A. & Kovner, I. Elliptic mass distributions versus elliptic potentials in gravitational lenses. Astrophys. J. 417, 450–473 (1993).

  65. 65.

    Limousin, M. et al. Combining strong and weak gravitational lensing in Abell 1689. Astrophys. J. 668, 643–666 (2007).

  66. 66.

    Kawamata, R., Oguri, M., Ishigaki, M., Shimasaku, K. & Ouchi, M. Precise strong lensing mass modeling of four Hubble Frontier Field clusters and a sample of magnified high-redshift galaxies. Astrophys. J. 819, 114–142 (2016).

  67. 67.

    Oguri, M. The mass distribution of SDSS J1004+4112 revisited. Publ. Astron. Soc. Jpn 62, 1017–1024 (2010).

  68. 68.

    Suyu, S. H. & Halkola, A. The halos of satellite galaxies: the companion of the massive elliptical lens SL2S J08544-0121. Astron. Astrophys. 524, A94 (2010).

  69. 69.

    Suyu, S. H. et al. Disentangling baryons and dark matter in the spiral gravitational lens B1933+503. Astrophys. J. 750, 10–24 (2012).

  70. 70.

    Liesenborgs, J., De Rijcke, S. & Dejonghe, H. A genetic algorithm for the non-parametric inversion of strong lensing systems. Mon. Not. R. Astron. Soc. 367, 1209–1216 (2006).

  71. 71.

    Liesenborgs, J., de Rijcke, S., Dejonghe, H. & Bekaert, P. Non-parametric inversion of gravitational lensing systems with few images using a multiobjective genetic algorithm. Mon. Not. R. Astron. Soc. 380, 1729–1736 (2007).

  72. 72.

    Mohammed, I., Liesenborgs, J., Saha, P. & Williams, L. L. R. Mass–galaxy offsets in Abell 3827, 2218 and 1689: intrinsic properties or line-of-sight substructures? Mon. Not. R. Astron. Soc. 439, 2651–2661 (2014).

  73. 73.

    Plummer, H. C. On the problem of distribution in globular star clusters. Mon. Not. R. Astron. Soc. 71, 460–470 (1911).

  74. 74.

    Bradač, M., Schneider, P., Lombardi, M. & Erben, T. Strong and weak lensing united. Astron. Astrophys. 437, 39–48 (2005).

  75. 75.

    Bradač, M. et al. Focusing cosmic telescopes: exploring redshift z ~ 5–6 galaxies with the bullet cluster 1E0657-56. Astrophys. J. 706, 1201–1212 (2009).

  76. 76.

    Sendra, I., Diego, J. M., Broadhurst, T. & Lazkoz, R. Enabling nonparametric strong lensing models to derive reliable cluster mass distributions—WSLAP+. Mon. Not. R. Astron. Soc. 437, 2642–2651 (2014).

  77. 77.

    Zitrin, A. et al. New multiply-lensed galaxies identified in ACS/NIC3 observations of Cl0024+1654 using an improved mass model. Mon. Not. R. Astron. Soc. 396, 1985–2002 (2009).

  78. 78.

    Zitrin, A. et al. Hubble Space Telescope combined strong and weak lensing analysis of the CLASH sample: mass and magnification models and systematic uncertainties. Astrophys. J. 801, 44–64 (2015).

  79. 79.

    Mann, A. W. & Ebeling, H. X-ray-optical classification of cluster mergers and the evolution of the cluster merger fraction. Mon. Not. R. Astron. Soc. 420, 2120–2138 (2012).

  80. 80.

    Christensen, L. et al. The low-mass end of the fundamental relation for gravitationally lensed star-forming galaxies at 1 < z < 6. Mon. Not. R. Astron. Soc. 427, 1953–1972 (2012).

  81. 81.

    Umetsu, K. et al. CLASH: weak-lensing shear-and-magnification analysis of 20 galaxy clusters. Astrophys. J. 795, 163–187 (2014).

  82. 82.

    Umetsu, K. et al. CLASH: joint analysis of strong-lensing, weak-lensing shear, and magnification data for 20 galaxy clusters. Astrophys. J. 821, 116–144 (2016).

  83. 83.

    Henze, M. et al. A remarkable recurrent nova in M 31: the predicted 2014 outburst in X-rays with Swift. Astron. Astrophys. 580, A46 (2015).

  84. 84.

    Prialnik, D. & Kovetz, A. An extended grid of multicycle nova evolution models. Astrophys. J. 445, 789–810 (1995).

  85. 85.

    Morishita, T. et al. Characterizing intracluster light in the Hubble Frontier Fields. Astrophys. J. 846, 139–152 (2017).

  86. 86.

    Chabrier, G. Galactic stellar and substellar initial mass function. Publ. Astron. Soc. Pac. 115, 763–795 (2003).

  87. 87.

    Hogg, D. W., Baldry, I. K., Blanton, M. R. & Eisenstein, D. J. The K correction. Preprint at https://arxiv.org/abs/astro-ph/0210394 (2002).

  88. 88.

    Graur, O. et al. Type-Ia supernova rates to redshift 2.4 from CLASH: the Cluster Lensing And Supernova survey with Hubble. Astrophys. J. 783, 28–46 (2014).

  89. 89.

    Rodney, S. A. et al. Type Ia supernova rate measurements to redshift 2.5 from CANDELS: searching for prompt explosions in the early Universe. Astron. J. 148, 13–40 (2014).

Download references

Acknowledgements

The authors thank M. Livio and L. Chomiuk for discussion of this paper, as well as S. Murray and the late N. Gehrels for assistance with the Chandra and Swift data, respectively. Some of the data in this paper were obtained from the Mikulski Archive for Space Telescopes (MAST). Support for MAST for non-HST data is provided by the NASA (National Aeronautics and Space Administration) Office of Space Science via grant NNX09AF08G, and by other grants and contracts. This research has made use of the NASA/IPAC Extragalactic Database (NED), which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA. Financial support for this work was provided to S.A.R., O.G. and L.-G.S. by NASA through grant HST-GO-13386 from the Space Telescope Science Institute (STScI), which is operated by Associated Universities for Research in Astronomy, Inc. (AURA), under NASA contract NAS 5-26555. G.B.C. and P.R. acknowledge financial support from PRIN-INAF 2014 1.05.01.94.02. J.M.D. acknowledges support of projects AYA2015-64508-P (MINECO/FEDER, UE) and AYA2012-39475-C02-01 and the consolider project CSD2010-00064 funded by the Ministerio de Economia y Competitividad. A.V.F. and P.L.K. are grateful for financial assistance from the Christopher R. Redlich Fund, the TABASGO Foundation and NASA/STScI grants GO-14208, GO-14528, GO-14872 and GO-14922; A.V.F. is also grateful to the Miller Institute for Basic Research in Science (U.C. Berkeley). The work of A.V.F. was conducted in part at the Aspen Center for Physics, which is supported by NSF grant PHY-1607611. R.J.F. and the UCSC group are supported in part by NSF grant AST-1518052 and from fellowships to R.J.F. from the Alfred P. Sloan Foundation and the David and Lucile Packard Foundation. C.G. acknowledges support by the VILLUM FONDEN Young Investigator Programme through grant 10123. J.H. was supported by a VILLUM FONDEN Investigator grant (project number 16599). M.J. was supported by the Science and Technology Facilities Council (grant ST/L00075X/1) and used the DiRAC Data Centric system at Durham University, operated by the Institute for Computational Cosmology on behalf of the STFC DiRAC HPC Facility (www.dirac.ac.uk). M.J. was funded by BIS National E-infrastructure capital grant ST/K00042X/1, STFC capital grant ST/H008519/1, STFC DiRAC Operations grant ST/K003267/1 and Durham University. DiRAC is part of the National E-Infrastructure. R.K. was supported by Grant-in-Aid for JSPS Research Fellow (16J01302). A.M. acknowledges the financial support of the Brazilian funding agency FAPESP (Postdoc fellowship, process 2014/11806-9). M.O. acknowledges support in part by World Premier International Research Center Initiative (WPI Initiative), MEXT, Japan, and JSPS KAKENHI grants 26800093 and 15H05892. J.R. acknowledges support from the ERC starting grant 336736-CALENDS. G.C. and S.H.S. thank the Max Planck Society for support through the Max Planck Research Group of S.H.S. The GLASS team and T.T. were funded by NASA through NASA/STScI grant GO-13459. L.L.R.W. thanks the Minnesota Supercomputing Institute at the University of Minnesota for providing resources and support.

Author information

Affiliations

  1. Department of Physics and Astronomy, University of South Carolina, Columbia, SC, USA

    • S. A. Rodney
  2. University Observatory Munich, Munich, Germany

    • I. Balestra
  3. Department of Physics, University of California, Davis, CA, USA

    • M. Bradac
    •  & A. Hoag
  4. Space Telescope Science Institute, Baltimore, MD, USA

    • G. Brammer
    • , A. G. Riess
    •  & L.-G. Strolger
  5. Fisika Teorikoa, Zientzia eta Teknologia Fakultatea, Euskal Herriko Unibertsitatea UPV/EHU, Leioa, Spain

    • T. Broadhurst
  6. IKERBASQUE, Basque Foundation for Science, Alameda Urquijo, Bilbao, Spain

    • T. Broadhurst
  7. Dipartimento di Fisica e Scienze della Terra, Università degli Studi di Ferrara, Ferrara, Italy

    • G. B. Caminha
    •  & P. Rosati
  8. Kapteyn Astronomical Institute, University of Groningen, P.O. Box 800, 9700 AV, Groningen, The Netherlands

    • G. B. Caminha
  9. Max-Planck-Institut für Astrophysik, Garching, Germany

    • G. Chirivì
    •  & S. H. Suyu
  10. IFCA, Instituto de Física de Cantabria (UC-CSIC), Santander, Spain

    • J. M. Diego
  11. Department of Astronomy, University of California, Berkeley, CA, USA

    • A. V. Filippenko
    •  & P. L. Kelly
  12. Miller Institute for Basic Research in Science, University of California, Berkeley, CA, USA

    • A. V. Filippenko
  13. Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA, USA

    • R. J. Foley
  14. Center for Cosmology and Particle Physics, New York University, New York, NY, USA

    • O. Graur
  15. Department of Astrophysics, American Museum of Natural History, New York, NY, USA

    • O. Graur
  16. Harvard/Smithsonian Center for Astrophysics, Cambridge, MA, USA

    • O. Graur
  17. Dipartimento di Fisica, Università degli Studi di Milano, Milan, Italy

    • C. Grillo
  18. Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark

    • C. Grillo
    • , J. Hjorth
    •  & J. Selsing
  19. Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA, USA

    • S. Hemmati
  20. Centre for Extragalactic Astronomy, Department of Physics, Durham University, Durham, UK

    • M. Jauzac
  21. Institute for Computational Cosmology, Durham University, Durham, UK

    • M. Jauzac
  22. Astrophysics and Cosmology Research Unit, School of Mathematical Sciences, University of KwaZulu-Natal, Durban, South Africa

    • M. Jauzac
  23. Department of Physics and Astronomy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA

    • S. W. Jha
  24. Department of Astronomy, Graduate School of Science, The University of Tokyo, Tokyo, Japan

    • R. Kawamata
  25. School of Physics and Astronomy, University of Minnesota, Minneapolis, MN, USA

    • P. L. Kelly
    •  & L. L. R. Williams
  26. Las Cumbres Observatory Global Telescope Network, Goleta, CA, USA

    • C. McCully
  27. Department of Physics, University of California, Santa Barbara, CA, USA

    • C. McCully
    •  & K. B. Schmidt
  28. Department of Physics and Astronomy, University of California, Riverside, CA, USA

    • B. Mobasher
  29. Universidade de São Paulo, Cidade Universitária, Instituto de Astronomia, Geofísica e Ciências Atmosféricas, São Paulo, Brazil

    • A. Molino
  30. Instituto de Astrofísica de Andalucía (CSIC), Granada, Spain

    • A. Molino
  31. Research Center for the Early Universe, University of Tokyo, Tokyo, Japan

    • M. Oguri
  32. Department of Physics, University of Tokyo, Tokyo, Japan

    • M. Oguri
  33. Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU, WPI), University of Tokyo, Kashiwa, Japan

    • M. Oguri
  34. Univ Lyon, Univ Lyon1, Ens de Lyon, CNRS, Centre de Recherche Astrophysique de Lyon UMR5574, F-69230, Saint-Genis-Laval, France

    • J. Richard
  35. Department of Physics and Astronomy, The Johns Hopkins University, Baltimore, MD, USA

    • A. G. Riess
  36. Leibniz-Institut für Astrophysik Potsdam (AIP), Potsdam, Germany

    • K. B. Schmidt
  37. Department of Astronomy, University of Michigan, Ann Arbor, MI, USA

    • K. Sharon
  38. Institute of Astronomy and Astrophysics, Academia Sinica, Taipei, Taiwan

    • S. H. Suyu
  39. Physik-Department, Technische Universität München, Garching, Germany

    • S. H. Suyu
  40. Department of Physics and Astronomy, University of California, Los Angeles, CA, USA

    • T. Treu
  41. Department of Astronomy, University of Arizona, Tucson, AZ, USA

    • B. J. Weiner
  42. Ben-Gurion University of the Negev, Beer-Sheva, Israel

    • A. Zitrin

Authors

  1. Search for S. A. Rodney in:

  2. Search for I. Balestra in:

  3. Search for M. Bradac in:

  4. Search for G. Brammer in:

  5. Search for T. Broadhurst in:

  6. Search for G. B. Caminha in:

  7. Search for G. Chirivì in:

  8. Search for J. M. Diego in:

  9. Search for A. V. Filippenko in:

  10. Search for R. J. Foley in:

  11. Search for O. Graur in:

  12. Search for C. Grillo in:

  13. Search for S. Hemmati in:

  14. Search for J. Hjorth in:

  15. Search for A. Hoag in:

  16. Search for M. Jauzac in:

  17. Search for S. W. Jha in:

  18. Search for R. Kawamata in:

  19. Search for P. L. Kelly in:

  20. Search for C. McCully in:

  21. Search for B. Mobasher in:

  22. Search for A. Molino in:

  23. Search for M. Oguri in:

  24. Search for J. Richard in:

  25. Search for A. G. Riess in:

  26. Search for P. Rosati in:

  27. Search for K. B. Schmidt in:

  28. Search for J. Selsing in:

  29. Search for K. Sharon in:

  30. Search for L.-G. Strolger in:

  31. Search for S. H. Suyu in:

  32. Search for T. Treu in:

  33. Search for B. J. Weiner in:

  34. Search for L. L. R. Williams in:

  35. Search for A. Zitrin in:

Contributions

S.A.R. designed the observations, processed the HST data, organized the analysis and wrote the manuscript. M.B., T.B., G.B.C., G.C., J.M.D., A.H., M.J., R.K., M.O., J.R., K.S., S.H.S., L.L.R.W. and A.Z. contributed to the lensing analysis with construction and/or interpretation of a cluster lens model. I.B., G.B., G.B.C., C.G., S.H., B.M., A.M., P.R., K.B.S., J.S. and B.J.W. collected, processed and/or analysed data on the host galaxy and other galaxies in the cluster field. R.J.F., S.W.J., P.L.K., C.M., O.G., J.H., A.G.R. and L.-G.S. contributed to the evaluation of models of astrophysical transients. A.V.F. and T.T. assisted with the observational programme design and editing of the manuscript.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to S. A. Rodney.

Supplementary information

  1. Supplementary Information

    Supplementary Figures 1–10, Supplementary Table 1–4, Supplementary References 1–19, Supplementary Text.

  2. Supplementary Information

    Supplementary Dataset

  3. Supplementary Information

    Supplementary Dataset

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/s41550-018-0405-4