Letter | Published:

The split in the ancient cold front in the Perseus cluster

Nature Astronomyvolume 2pages292296 (2018) | Download Citation

Abstract

Sloshing cold fronts in clusters, produced as the dense cluster core moves around in the cluster potential in response to in-falling subgroups, provide a powerful probe of the physics of the intracluster medium and the magnetic fields permeating it1,2. These sharp discontinuities in density and temperature rise gradually outwards with age in a characteristic spiral pattern, embedding into the intracluster medium a record of the minor merging activity of clusters: the further from the cluster centre a cold front is, the older it is. Recently, it was discovered that these cold fronts can survive out to extremely large radii in the Perseus cluster3. Here, we report on high-spatial-resolution Chandra observations of the large-scale cold front in Perseus. We find that rather than broadening through diffusion, the cold front remains extremely sharp (consistent with abrupt jumps in density) and instead is split into two sharp edges. These results show that magnetic draping can suppress diffusion for vast periods of time—around ~5 Gyr—even as the cold front expands out to nearly half the cluster virial radius.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from $8.99

All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Markevitch, M. & Vikhlinin, A. Shocks and cold fronts in galaxy clusters. Phys. Rep. 443, 1–53 (2007).

  2. 2.

    Zuhone, J. A. & Roediger, E. Cold fronts: probes of plasma astrophysics in galaxy clusters. J. Plasma Phys. 82, 535820301 (2016).

  3. 3.

    Simionescu, A. et al. Large-scale motions in the Perseus galaxy cluster. Astrophys. J. 757, 182 (2012).

  4. 4.

    Markevitch, M. et al. Chandra observation of Abell 2142: survival of dense subcluster cores in a merger. Astrophys. J. 541, 542–549 (2000).

  5. 5.

    Vikhlinin, A., Markevitch, M. & Murray, S. S. A moving cold front in the intergalactic medium of A3667. Astrophys. J. 551, 160–171 (2001).

  6. 6.

    Lyutikov, M. Magnetic draping of merging cores and radio bubbles in clusters of galaxies. Mon. Not. R. Astron. Soc. 373, 73–78 (2006).

  7. 7.

    Asai, N., Fukuda, N. & Matsumoto, R. Three-dimensional magnetohydrodynamic simulations of cold fronts in magnetically turbulent ICM. Astrophys. J. 663, 816–823 (2007).

  8. 8.

    Dursi, L. J. & Pfrommer, C. Draping of cluster magnetic fields over bullets and bubbles—morphology and dynamic effects. Astrophys. J. 677, 993–1018 (2008).

  9. 9.

    ZuHone, J. A., Markevitch, M. & Lee, D. Sloshing of the magnetized cool gas in the cores of galaxy clusters. Astrophys. J. 743, 16 (2011).

  10. 10.

    Rossetti, M. et al. Abell 2142 at large scales: an extreme case for sloshing? Astron. Astrophys. 556, A44 (2013).

  11. 11.

    Walker, S. A., Fabian, A. C. & Sanders, J. S. Large-scale gas sloshing out to half the virial radius in the strongest cool core REXCESS galaxy cluster, RXJ2014.8-2430. Mon. Not. R. Astron. Soc. 441, L31–L35 (2014).

  12. 12.

    ZuHone, J. A., Markevitch, M. & Johnson, R. E. Stirring up the pot: can cooling flows in galaxy clusters be quenched by gas sloshing? Astrophys. J. 717, 908–928 (2010).

  13. 13.

    Roediger, E. et al. Gas sloshing, cold fronts, Kelvin–Helmholtz instabilities and the merger history of the cluster of galaxies Abell 496. Mon. Not. R. Astron. Soc. 420, 3632–3648 (2012).

  14. 14.

    Roediger, E., Kraft, R. P., Forman, W. R., Nulsen, P. E. J. & Churazov, E. Kelvin–Helmholtz instabilities at the sloshing cold fronts in the Virgo cluster as a measure for the effective intracluster medium viscosity. Astrophys. J. 764, 60 (2013).

  15. 15.

    Walker, S. A., Hlavacek-Larrondo, J. & Gendron-Marsolais, M. et al. Is there a giant Kelvin–Helmholtz instability in the sloshing cold front of the Perseus cluster? Mon. Not. R. Astron. Soc. 468, 2506–2516 (2017).

  16. 16.

    Werner, N. et al. Deep Chandra observation and numerical studies of the nearest cluster cold front in the sky. Mon. Not. R. Astron. Soc. 455, 846–858 (2016).

  17. 17.

    ZuHone, J. A. et al. The Galaxy Cluster Merger Catalog: an online repository of mock observations from simulated galaxy cluster mergers. Preprint at https://arxiv.org/abs/1609.04121 (2016).

  18. 18.

    Fabian, A. C. Observational evidence of active galactic nuclei feedback. Annu. Rev. Astron. Astrophys. 50, 455–489 (2012).

  19. 19.

    Fabian, A. C. et al. Do sound waves transport the AGN energy in the Perseus cluster? Mon. Not. R. Astron. Soc. 464, L1–L5 (2017).

  20. 20.

    Zhuravleva, I. et al. Turbulent heating in galaxy clusters brightest in X-rays. Nature 515, 85–87 (2014).

  21. 21.

    Lau, E. T., Kravtsov, A. V. & Nagai, D. Residual gas motions in the intracluster medium and bias in hydrostatic measurements of mass profiles of clusters. Astrophys. J. 705, 1129–1138 (2009).

  22. 22.

    Sanders, J. S., Fabian, A. C., Russell, H. R., Walker, S. A. & Blundell, K. M. Detecting edges in the X-ray surface brightness of galaxy clusters. Mon. Not. R. Astron. Soc. 460, 1898–1911 (2016).

  23. 23.

    Walker, S. A., Sanders, J. S. & Fabian, A. C. Applications for edge detection techniques using Chandra and XMM-Newton data: galaxy clusters and beyond. Mon. Not. R. Astron. Soc. 461, 684–697 (2016).

  24. 24.

    Ascasibar, Y. & Markevitch, M. The origin of cold fronts in the cores of relaxed galaxy clusters. Astrophys. J. 650, 102–127 (2006).

  25. 25.

    Roediger, E. & ZuHone, J. A. Fast simulations of gas sloshing and cold front formation. Mon. Not. R. Astron. Soc. 419, 1338–1349 (2012).

  26. 26.

    Hitomi Collaboration. The quiescent intracluster medium in the core of the Perseus cluster. Nature 535, 117–121 (2016).

  27. 27.

    ZuHone, J. A. et al. What do the Hitomi observations tell us about the turbulent velocities in the Perseus cluster? Probing the velocity field with mock observations. Preprint at https://arxiv.org/abs/1708.07206 (2017).

  28. 28.

    Snowden, S. L. et al. A catalog of galaxy clusters observed by XMM-Newton. Astron. Astrophys. 478, 615–658 (2008).

  29. 29.

    Wang, Q. D. & Walker, S. X-ray mapping the outer regions of galaxy clusters at z = 0.23 and 0.45. Mon. Not. R. Astron. Soc. 439, 1796–1806 (2014).

  30. 30.

    Urban, O. et al. Azimuthally resolved X-ray spectroscopy to the edge of the Perseus cluster. Mon. Not. R. Astron. Soc. 437, 3939–3961 (2014).

  31. 31.

    Moretti, A., Campana, S., Lazzati, D. & Tagliaferri, G. The resolved fraction of the cosmic X-ray background. Astrophys. J. 588, 696–703 (2003).

  32. 32.

    Walker, S. A., Fabian, A. C., Sanders, J. S., Simionescu, A. & Tawara, Y. X-ray exploration of the outskirts of the nearby Centaurus cluster using Suzaku and Chandra. Mon. Not. R. Astron. Soc. 432, 554–569 (2013).

  33. 33.

    Walker, S. A., Fabian, A. C. & Sanders, J. S. An XMM-Newton view of the merging activity in the Centaurus cluster. Mon. Not. R. Astron. Soc. 435, 3221–3230 (2013).

  34. 34.

    Smith, R. K., Brickhouse, N. S., Liedahl, D. A. & Raymond, J. C. Collisional plasma models with APEC/APED: emission-line diagnostics of hydrogen-like and helium-like ions. Astrophys. J. 556, L91–L95 (2001).

  35. 35.

    Kalberla, P. M. et al. The Leiden/Argentine/Bonn (LAB) survey of Galactic HI. Final data release of the combined LDS and IAR surveys with improved stray-radiation corrections. Astron. Astrophys. 440, 775–782 (2005).

  36. 36.

    Sanders, J. S. & Fabian, A. C. A deeper X-ray study of the core of the Perseus galaxy cluster: the power of sound waves and the distribution of metals and cosmic rays. Mon. Not. R. Astron. Soc. 381, 1381–1399 (2007).

  37. 37.

    Russell, H. R., Sanders, J. S. & Fabian, A. C. Direct X-ray spectral deprojection of galaxy clusters. Mon. Not. R. Astron. Soc. 390, 1207–1216 (2008).

  38. 38.

    Sanders, J. S. et al. A very deep Chandra view of metals, sloshing and feedback in the Centaurus cluster of galaxies. Mon. Not. R. Astron. Soc. 457, 82–109 (2016).

Download references

Acknowledgements

S.A.W. was supported by an appointment to the National Aeronautics and Space Administration Postdoctoral Program at the Goddard Space Flight Center, administered by the Universities Space Research Association through a contract with the National Aeronautics and Space Administration. A.F. acknowledges support from European Research Council Advanced Grant FEEDBACK.

Author information

Affiliations

  1. Astrophysics Science Division, X-ray Astrophysics Laboratory, National Aeronautics and Space Administration Goddard Space Flight Center, Greenbelt, MD, USA

    • Stephen A. Walker
  2. Harvard–Smithsonian Center for Astrophysics, Cambridge, MA, USA

    • John ZuHone
  3. Institute of Astronomy, Cambridge, MA, USA

    • Andy Fabian
  4. Max-Planck-Institut für Extraterrestrische Physik, Garching, Germany

    • Jeremy Sanders

Authors

  1. Search for Stephen A. Walker in:

  2. Search for John ZuHone in:

  3. Search for Andy Fabian in:

  4. Search for Jeremy Sanders in:

Contributions

S.A.W. wrote the manuscript with comments from all authors. S.A.W. performed the Chandra and XMM-Newton data analysis and led the Chandra proposal. J.Z. produced the galaxy cluster sloshing simulations.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Stephen A. Walker.

Supplementary information

  1. Supplementary Information

    Supplementary Figures 1–5 and Supplementary Tables 1–2

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/s41550-018-0401-8