Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The split in the ancient cold front in the Perseus cluster


Sloshing cold fronts in clusters, produced as the dense cluster core moves around in the cluster potential in response to in-falling subgroups, provide a powerful probe of the physics of the intracluster medium and the magnetic fields permeating it1,2. These sharp discontinuities in density and temperature rise gradually outwards with age in a characteristic spiral pattern, embedding into the intracluster medium a record of the minor merging activity of clusters: the further from the cluster centre a cold front is, the older it is. Recently, it was discovered that these cold fronts can survive out to extremely large radii in the Perseus cluster3. Here, we report on high-spatial-resolution Chandra observations of the large-scale cold front in Perseus. We find that rather than broadening through diffusion, the cold front remains extremely sharp (consistent with abrupt jumps in density) and instead is split into two sharp edges. These results show that magnetic draping can suppress diffusion for vast periods of time—around ~5 Gyr—even as the cold front expands out to nearly half the cluster virial radius.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Wide-field X-ray observations compared with simulations.
Fig. 2: Deep Chandra observations.
Fig. 3: Simulations of cold front development with time.
Fig. 4: Simulations of cold front structure development.

Similar content being viewed by others


  1. Markevitch, M. & Vikhlinin, A. Shocks and cold fronts in galaxy clusters. Phys. Rep. 443, 1–53 (2007).

    Article  ADS  Google Scholar 

  2. Zuhone, J. A. & Roediger, E. Cold fronts: probes of plasma astrophysics in galaxy clusters. J. Plasma Phys. 82, 535820301 (2016).

    Article  Google Scholar 

  3. Simionescu, A. et al. Large-scale motions in the Perseus galaxy cluster. Astrophys. J. 757, 182 (2012).

    Article  ADS  Google Scholar 

  4. Markevitch, M. et al. Chandra observation of Abell 2142: survival of dense subcluster cores in a merger. Astrophys. J. 541, 542–549 (2000).

    Article  ADS  Google Scholar 

  5. Vikhlinin, A., Markevitch, M. & Murray, S. S. A moving cold front in the intergalactic medium of A3667. Astrophys. J. 551, 160–171 (2001).

    Article  ADS  Google Scholar 

  6. Lyutikov, M. Magnetic draping of merging cores and radio bubbles in clusters of galaxies. Mon. Not. R. Astron. Soc. 373, 73–78 (2006).

    Article  ADS  Google Scholar 

  7. Asai, N., Fukuda, N. & Matsumoto, R. Three-dimensional magnetohydrodynamic simulations of cold fronts in magnetically turbulent ICM. Astrophys. J. 663, 816–823 (2007).

    Article  ADS  Google Scholar 

  8. Dursi, L. J. & Pfrommer, C. Draping of cluster magnetic fields over bullets and bubbles—morphology and dynamic effects. Astrophys. J. 677, 993–1018 (2008).

    Article  ADS  Google Scholar 

  9. ZuHone, J. A., Markevitch, M. & Lee, D. Sloshing of the magnetized cool gas in the cores of galaxy clusters. Astrophys. J. 743, 16 (2011).

    Article  ADS  Google Scholar 

  10. Rossetti, M. et al. Abell 2142 at large scales: an extreme case for sloshing? Astron. Astrophys. 556, A44 (2013).

    Article  Google Scholar 

  11. Walker, S. A., Fabian, A. C. & Sanders, J. S. Large-scale gas sloshing out to half the virial radius in the strongest cool core REXCESS galaxy cluster, RXJ2014.8-2430. Mon. Not. R. Astron. Soc. 441, L31–L35 (2014).

    Article  ADS  Google Scholar 

  12. ZuHone, J. A., Markevitch, M. & Johnson, R. E. Stirring up the pot: can cooling flows in galaxy clusters be quenched by gas sloshing? Astrophys. J. 717, 908–928 (2010).

    Article  ADS  Google Scholar 

  13. Roediger, E. et al. Gas sloshing, cold fronts, Kelvin–Helmholtz instabilities and the merger history of the cluster of galaxies Abell 496. Mon. Not. R. Astron. Soc. 420, 3632–3648 (2012).

    Article  ADS  Google Scholar 

  14. Roediger, E., Kraft, R. P., Forman, W. R., Nulsen, P. E. J. & Churazov, E. Kelvin–Helmholtz instabilities at the sloshing cold fronts in the Virgo cluster as a measure for the effective intracluster medium viscosity. Astrophys. J. 764, 60 (2013).

    Article  ADS  Google Scholar 

  15. Walker, S. A., Hlavacek-Larrondo, J. & Gendron-Marsolais, M. et al. Is there a giant Kelvin–Helmholtz instability in the sloshing cold front of the Perseus cluster? Mon. Not. R. Astron. Soc. 468, 2506–2516 (2017).

    Article  ADS  Google Scholar 

  16. Werner, N. et al. Deep Chandra observation and numerical studies of the nearest cluster cold front in the sky. Mon. Not. R. Astron. Soc. 455, 846–858 (2016).

    Article  ADS  Google Scholar 

  17. ZuHone, J. A. et al. The Galaxy Cluster Merger Catalog: an online repository of mock observations from simulated galaxy cluster mergers. Preprint at (2016).

  18. Fabian, A. C. Observational evidence of active galactic nuclei feedback. Annu. Rev. Astron. Astrophys. 50, 455–489 (2012).

    Article  ADS  Google Scholar 

  19. Fabian, A. C. et al. Do sound waves transport the AGN energy in the Perseus cluster? Mon. Not. R. Astron. Soc. 464, L1–L5 (2017).

    Article  ADS  Google Scholar 

  20. Zhuravleva, I. et al. Turbulent heating in galaxy clusters brightest in X-rays. Nature 515, 85–87 (2014).

    Article  ADS  Google Scholar 

  21. Lau, E. T., Kravtsov, A. V. & Nagai, D. Residual gas motions in the intracluster medium and bias in hydrostatic measurements of mass profiles of clusters. Astrophys. J. 705, 1129–1138 (2009).

    Article  ADS  Google Scholar 

  22. Sanders, J. S., Fabian, A. C., Russell, H. R., Walker, S. A. & Blundell, K. M. Detecting edges in the X-ray surface brightness of galaxy clusters. Mon. Not. R. Astron. Soc. 460, 1898–1911 (2016).

    Article  ADS  Google Scholar 

  23. Walker, S. A., Sanders, J. S. & Fabian, A. C. Applications for edge detection techniques using Chandra and XMM-Newton data: galaxy clusters and beyond. Mon. Not. R. Astron. Soc. 461, 684–697 (2016).

    Article  ADS  Google Scholar 

  24. Ascasibar, Y. & Markevitch, M. The origin of cold fronts in the cores of relaxed galaxy clusters. Astrophys. J. 650, 102–127 (2006).

    Article  ADS  Google Scholar 

  25. Roediger, E. & ZuHone, J. A. Fast simulations of gas sloshing and cold front formation. Mon. Not. R. Astron. Soc. 419, 1338–1349 (2012).

    Article  ADS  Google Scholar 

  26. Hitomi Collaboration. The quiescent intracluster medium in the core of the Perseus cluster. Nature 535, 117–121 (2016).

    Article  ADS  Google Scholar 

  27. ZuHone, J. A. et al. What do the Hitomi observations tell us about the turbulent velocities in the Perseus cluster? Probing the velocity field with mock observations. Preprint at (2017).

  28. Snowden, S. L. et al. A catalog of galaxy clusters observed by XMM-Newton. Astron. Astrophys. 478, 615–658 (2008).

    Article  ADS  Google Scholar 

  29. Wang, Q. D. & Walker, S. X-ray mapping the outer regions of galaxy clusters at z = 0.23 and 0.45. Mon. Not. R. Astron. Soc. 439, 1796–1806 (2014).

    Article  ADS  Google Scholar 

  30. Urban, O. et al. Azimuthally resolved X-ray spectroscopy to the edge of the Perseus cluster. Mon. Not. R. Astron. Soc. 437, 3939–3961 (2014).

    Article  ADS  Google Scholar 

  31. Moretti, A., Campana, S., Lazzati, D. & Tagliaferri, G. The resolved fraction of the cosmic X-ray background. Astrophys. J. 588, 696–703 (2003).

    Article  ADS  Google Scholar 

  32. Walker, S. A., Fabian, A. C., Sanders, J. S., Simionescu, A. & Tawara, Y. X-ray exploration of the outskirts of the nearby Centaurus cluster using Suzaku and Chandra. Mon. Not. R. Astron. Soc. 432, 554–569 (2013).

    Article  ADS  Google Scholar 

  33. Walker, S. A., Fabian, A. C. & Sanders, J. S. An XMM-Newton view of the merging activity in the Centaurus cluster. Mon. Not. R. Astron. Soc. 435, 3221–3230 (2013).

    Article  ADS  Google Scholar 

  34. Smith, R. K., Brickhouse, N. S., Liedahl, D. A. & Raymond, J. C. Collisional plasma models with APEC/APED: emission-line diagnostics of hydrogen-like and helium-like ions. Astrophys. J. 556, L91–L95 (2001).

    Article  ADS  Google Scholar 

  35. Kalberla, P. M. et al. The Leiden/Argentine/Bonn (LAB) survey of Galactic HI. Final data release of the combined LDS and IAR surveys with improved stray-radiation corrections. Astron. Astrophys. 440, 775–782 (2005).

    Article  ADS  Google Scholar 

  36. Sanders, J. S. & Fabian, A. C. A deeper X-ray study of the core of the Perseus galaxy cluster: the power of sound waves and the distribution of metals and cosmic rays. Mon. Not. R. Astron. Soc. 381, 1381–1399 (2007).

    Article  ADS  Google Scholar 

  37. Russell, H. R., Sanders, J. S. & Fabian, A. C. Direct X-ray spectral deprojection of galaxy clusters. Mon. Not. R. Astron. Soc. 390, 1207–1216 (2008).

    Article  ADS  Google Scholar 

  38. Sanders, J. S. et al. A very deep Chandra view of metals, sloshing and feedback in the Centaurus cluster of galaxies. Mon. Not. R. Astron. Soc. 457, 82–109 (2016).

    Article  ADS  Google Scholar 

Download references


S.A.W. was supported by an appointment to the National Aeronautics and Space Administration Postdoctoral Program at the Goddard Space Flight Center, administered by the Universities Space Research Association through a contract with the National Aeronautics and Space Administration. A.F. acknowledges support from European Research Council Advanced Grant FEEDBACK.

Author information

Authors and Affiliations



S.A.W. wrote the manuscript with comments from all authors. S.A.W. performed the Chandra and XMM-Newton data analysis and led the Chandra proposal. J.Z. produced the galaxy cluster sloshing simulations.

Corresponding author

Correspondence to Stephen A. Walker.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–5 and Supplementary Tables 1–2

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Walker, S.A., ZuHone, J., Fabian, A. et al. The split in the ancient cold front in the Perseus cluster. Nat Astron 2, 292–296 (2018).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing