Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Pyrene synthesis in circumstellar envelopes and its role in the formation of 2D nanostructures

Abstract

For the past decades, the hydrogen-abstraction/acetylene-addition (HACA) mechanism has been instrumental in attempting to untangle the origin of polycyclic aromatic hydrocarbons (PAHs) as identified in carbonaceous meteorites such as Allende and Murchison. However, the fundamental reaction mechanisms leading to the synthesis of PAHs beyond phenanthrene (C14H10) are still unknown. By exploring the reaction of the 4-phenanthrenyl radical (C14H9) with acetylene (C2H2) under conditions prevalent in carbon-rich circumstellar environments, we show evidence of a facile, isomer-selective formation of pyrene (C16H10). Along with the hydrogen-abstraction/vinylacetylene-addition (HAVA) mechanism, molecular mass growth processes from pyrene may lead through systematic ring expansions not only to more complex PAHs, but ultimately to 2D graphene-type structures. These fundamental reaction mechanisms are crucial to facilitate an understanding of the origin and evolution of the molecular universe and, in particular, of carbon in our Galaxy.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Possible structures of isomers of aromatic molecules detected in carbonaceous meteorites.
Fig. 2: Vacuum ultraviolet photoionization mass spectra.
Fig. 3: Photoionization efficiency (PIE) curves for m/z = 202 and 203. The black curves are experimentally derived PIE curves, with the grey area defining the error.
Fig. 4: Potential energy surface (PES) for the 4-phenanthrenyl (C14H9) reaction with acetylene (C2H2) calculated at the G3(MP2,CC)//B3LYP/6-311 G(d,p) level of theory.
Fig. 5: Molecular mass growth processes to PAHs involving HACA and HAVA.

Similar content being viewed by others

References

  1. Elsila, J. E., de Leon, N. P., Buseck, P. R. & Zare, R. N. Alkylation of polycyclic aromatic hydrocarbons in carbonaceous chondrites. Geochim. Cosmochim. Acta 69, 1349–1357 (2005).

    Article  ADS  Google Scholar 

  2. D’Hendecourt, L. & Ehrenfreund, P. Spectroscopic properties of polycyclic aromatic hydrocarbons (PAHs) and astrophysical implications. Adv. Space Res. 19, 1023–1032 (1997).

    Article  ADS  Google Scholar 

  3. Tielens, A. G. G. M., Kerckhoven, C., Peeters, E. & Hony, S. Interstaller and circumstellar PAHs. in Proc. IAU Symposium 197: Astrochemistry: from Molecular Clouds to Planetary Systems (eds Minh, Y. C & van Dishoeck, E. F.) 349–362 (2000).

  4. Rhee, Y. M., Lee, T. J., Gudipati, M. S., Allamandola, L. J. & Head-Gordon, M. Charged polycyclic aromatic hydrocarbon clusters and the galactic extended red emission. Proc. Natl Acad. Sci. USA 104, 5274–5278 (2007).

    Article  ADS  Google Scholar 

  5. Salama, F., Galazutdinov, G. A., Krelowski, J., Allamandola, L. J. & Musaev, F. A. Polycyclic aromatic hydrocarbons and the diffuse interstellar bands: a survey. Astrophys. J. 526, 265–273 (1999).

    Article  ADS  Google Scholar 

  6. Duley, W. W. Polycyclic aromatic hydrocarbons, carbon nanoparticles and the diffuse interstellar bands. Faraday Discuss. 133, 415–425 (2006).

    Article  ADS  Google Scholar 

  7. Ricks, A. M., Douberly, G. E. & Duncan, M. A. The infrared spectrum of protonated naphthalene and its relevance for the unidentified infrared bands. Astrophys. J. 702, 301–306 (2009).

    Article  ADS  Google Scholar 

  8. Messenger, S. et al. Indigenous polycyclic aromatic hydrocarbons in circumstellar graphite grains from primitive meteorites. Astrophys. J. 502, 284–295 (1998).

    Article  ADS  Google Scholar 

  9. Hahn, J. H., Zenobi, R., Bada, J. L. & Zare, R. N. Application of two-step laser mass spectrometry to cosmogeochemistry: direct analysis of meteorites. Science 239, 1523–1525 (1988).

    Article  ADS  Google Scholar 

  10. Zenobi, R., Philippoz, J.-M., Buseck, P. R. & Zare, R. N. Spatially resolved organic analysis of the allende meteorite. Science 246, 1026–1029 (1989).

    Article  ADS  Google Scholar 

  11. Plows, F. L., Elsila, J. E., Zare, R. N. & Buseck, P. R. Evidence that polycyclic aromatic hydrocarbons in two carbonaceous chondrites predate parent-body formation. Geochim. Cosmochim. Acta 67, 1429–1436 (2003).

    Article  ADS  Google Scholar 

  12. Gilmour, I. & Pillinger, C. T. Isotopic compositions of individual polycyclic aromatic hydrocarbons from the murchison meteorite. Mon. Not. R. Astron. Soc. 269, 235–240 (1994).

    Article  ADS  Google Scholar 

  13. Naraoka, H., Shimoyama, A. & Harada, K. Molecular and isotopic distributions of pahs from three antarctic carbonaceous chondrites (CM2). Mineral. Mag. 62A, 1056–1057 (1998).

    Article  ADS  Google Scholar 

  14. Naraoka, H., Shimoyama, A. & Harada, K. Isotopic evidence from an antarctic carbonaceous chondrite for two reaction pathways of extraterrestrial PAH formation. Earth Planet. Sci. Lett. 184, 1–7 (2000).

    Article  ADS  Google Scholar 

  15. Tielens, A. G. G. M. Interstellar polycyclic aromatic hydrocarbon molecules. Annu. Rev. Astron. Astr. 46, 289–337 (2008).

    Article  ADS  Google Scholar 

  16. Tielens, A. G. G. M. The molecular universe. Rev. Mod. Phys. 85, 1021–1081 (2013).

    Article  ADS  Google Scholar 

  17. Parker, D. S. et al. Low temperature formation of naphthalene and its role in the synthesis of pahs (polycyclic aromatic hydrocarbons) in the interstellar medium. Proc. Natl Acad. Sci. USA 109, 53–58 (2012).

    Article  ADS  Google Scholar 

  18. Parker, D. S., Kaiser, R. I., Troy, T. P. & Ahmed, M. Hydrogen abstraction/acetylene addition revealed. Angew. Chem. Int. Edit. 53, 7740–7744 (2014).

    Article  Google Scholar 

  19. Parker, D. S. N. et al. Unexpected chemistry from the reaction of naphthyl and acetylene at combustion-like temperatures. Angew. Chem. Int. Edit. 54, 5421–5424 (2015).

    Article  Google Scholar 

  20. Yang, T. et al. HACA's heritage: a free-radical pathway to phenanthrene in circumstellar envelopes of asymptotic giant branch stars. Angew. Chem. Int. Edit. 56, 4515–4519 (2017).

    Article  Google Scholar 

  21. Frenklach, M. & Feigelson, E. D. Formation of polycyclic aromatic hydrocarbons in circumstellar envelopes. Astrophys. J. 341, 372–384 (1989).

    Article  ADS  Google Scholar 

  22. Richter, H. & Howard, J. B. Formation of polycyclic aromatic hydrocarbons and their growth to soot — a review of chemical reaction pathways. Prog. Energy Combust. Sci. 26, 565–608 (2000).

    Article  Google Scholar 

  23. Frenklach, M. Reaction mechanism of soot formation in flames. Phys. Chem. Chem. Phys. 4, 2028–2037 (2002).

    Article  Google Scholar 

  24. Frenklach, M., Clary, D. W., Gardiner, W. C. & Stein, S. E. Detailed kinetic modeling of soot formation in shock-tube pyrolysis of acetylene. Proc. Combust. Inst. 20, 887–901 (1985).

    Article  Google Scholar 

  25. Wang, H. & Frenklach, M. Calculations of rate coefficients for the chemically activated reactions of acetylene with vinylic and aromatic radicals. J. Phys. Chem. 98, 11465–11489 (1994).

    Article  ADS  Google Scholar 

  26. Appel, J., Bockhorn, H. & Frenklach, M. Kinetic modeling of soot formation with detailed chemistry and physics: laminar premixed flames of C2 hydrocarbons. Combust. Flame 121, 122–136 (2000).

    Article  Google Scholar 

  27. Marsh, N. D. & Wornat, M. J. Formation pathways of ethynyl-substituted and cyclopentafused polycyclic aromatic hydrocarbons. Proc. Combust. Inst. 28, 2585–2592 (2000).

    Article  Google Scholar 

  28. Tokmakov, I. V. & Lin, M. C. Reaction of phenyl radicals with acetylene: Quantum chemical investigation of the mechanism and master equation analysis of the kinetics. J. Am. Chem. Soc. 125, 11397–11408 (2003).

    Article  Google Scholar 

  29. Kislov, V. V., Sadovnikov, A. I. & Mebel, A. M. Formation mechanism of polycyclic aromatic hydrocarbons beyond the second aromatic ring. J. Phys. Chem. A 117, 4794–4816 (2013).

    Article  Google Scholar 

  30. Chmielewski, A. G. et al. NOx and PAHs removal from industrial flue gas by using electron beam technology with alcohol addition. Radiat. Phys. Chem. 67, 555–560 (2003).

    Article  ADS  Google Scholar 

  31. Schuetz, C. A. & Frenklach, M. Nucleation of soot: molecular dynamics simulations of pyrene dimerization. Proc. Combust. Inst. 29, 2307–2314 (2002).

    Article  Google Scholar 

  32. Sabbah, H., Biennier, L., Klippenstein, S. J., Sims, I. R. & Rowe, B. R. Exploring the role of PAHs in the formation of soot: pyrene dimerization. J. Phys. Chem. Lett. 1, 2962–2967 (2010).

    Article  Google Scholar 

  33. Chen, P., Colson, S. D., Chupka, W. A. & Berson, J. A. Flash pyrolytic production of rotationally cold free radicals in a supersonic jet: resonant multiphoton spectrum of the 3p2A2”←X2A2” origin band of methyl. J. Phys. Chem. 90, 2319–2321 (1986).

    Article  Google Scholar 

  34. Chen, P., Pallix, J. B., Chupka, W. A. & Colson, S. D. Resonant multiphoton ionization spectrum and electronic structure of CH radical: new states and assignments above 50,000 cm–1. J. Chem. Phys. 86, 516–520 (1987).

    Article  ADS  Google Scholar 

  35. Photonionization Cross Section Database Version 2.0 (National Synchrotron Radiation Laboratory, China, 2017); http://flame.nsrl.ustc.edu.cn/database/

  36. Zhang, F., Gu, X. & Kaiser, R. I. Formation of the diphenyl molecule in the crossed beam reaction of phenyl radicals with benzene. J. Chem. Phys. 128, 084315 (2008).

    Article  ADS  Google Scholar 

  37. Mebel, A. M., Landera, A. & Kaiser, R. I. Formation mechanisms of naphthalene and indene: from the interstellar medium to combustion flames. J. Phys. Chem. A 121, 901–926 (2017).

    Article  Google Scholar 

  38. Mostefaoui, S., Hoppe, P. & El Goresy, A. In situ discovery of graphite with interstellar isotopic signatures in a chondrule-free clast in an L3 chondrite. Science 280, 1418–1420 (1998).

    Article  ADS  Google Scholar 

  39. Smith, P. P. K. & Buseck, P. R. Carbon in the allende meteorite: evidence for poorly graphitized carbon rather than carbyne. Geochim. Cosmochim. Acta. Suppl. 16, 1167–1175 (1982).

    Google Scholar 

  40. Duley, W. W. Chemical evolution of carbonaceous material in interstellar clouds. Astrophys. J. 528, 841–848 (2000).

    Article  ADS  Google Scholar 

  41. Amari, S., Lewis, R. S. & Anders, E. Interstellar grains in meteorites: III. Graphite and its noble gases. Geochim. Cosmochim. Acta. 59, 1411–1426 (1995).

    Article  ADS  Google Scholar 

  42. Zinner, E., Amari, S., Wopenka, B. & Lewis, R. S. Interstellar graphite in meteorites: isotopic compositions and structural properties of single graphite grains from murchison. Meteoritics 30, 209–226 (1995).

    Article  ADS  Google Scholar 

  43. Garvie, L. A. J. & Buseck, P. R. Nanosized carbon-rich grains in carbonaceous chondrite meteorites. Earth Planet. Sci. Lett. 224, 431–439 (2004).

    Article  ADS  Google Scholar 

  44. Zega, T. J., Garvie, L. A. J., Dodony, I. & Buseck, P. R. Serpentine nanotubes in the Mighei CM chondrite. Earth Planet. Sci. Lett. 223, 141–146 (2004).

    Article  ADS  Google Scholar 

  45. Cami, J., Bernard-Salas, J., Peeters, E. & Malek, S. E. Detection of C60 and C70 in a young planetary nebula. Science 329, 1180–1182 (2010).

    Article  ADS  Google Scholar 

  46. Cherchneff, I., Barker, J. R. & Tielens, A. G. G. M. Polycyclic aromatic hydrocarbon formation in carbon-rich stellar envelopes. Astrophys. J. 401, 269–287 (1992).

    Article  ADS  Google Scholar 

  47. Cohen, M., Tielens, A. G. G. M. & Bregman, J. D. Mid-infrared spectra of WC 9 Stars: the composition of circumstellar and interstellar dust. Astrophys. J. 344, L13–L16 (1989).

    Article  ADS  Google Scholar 

  48. Micelotta, E., Jones, A. & Tielens, A. Polycyclic aromatic hydrocarbon processing in interstellar shocks. Astron. Astrophys. 510, A36 (2010).

    Article  ADS  Google Scholar 

  49. Allamandola, L. J., Tielens, A. G. G. M. & Barker, J. R. Interstellar polycyclic aromatic hydrocarbons: the infrared emission bands, the excitation/emission mechanism, and the astrophysical implications. Astrophys. J. Suppl. Ser. 71, 733–775 (1989).

    Article  ADS  Google Scholar 

  50. Bernstein, M. P. et al. UV irradiation of polycyclic aromatic hydrocarbons in ices: production of alcohols, quinones, and ethers. Science 283, 1135–1138 (1999).

    Article  ADS  Google Scholar 

  51. Cool, T. A. et al. Selective detection of isomers with photoionization mass spectrometry for studies of hydrocarbon flame chemistry. J. Chem. Phys. 119, 8356–8365 (2003).

    Article  ADS  Google Scholar 

  52. Qi, F. et al. Isomeric identification of polycyclic aromatic hydrocarbons formed in combustion with tunable vacuum ultraviolet photoionization. Rev. Sci. Instrum. 77, 084101 (2006).

    Article  ADS  Google Scholar 

  53. Qi, F. Combustion chemistry probed by synchrotron VUV photoionization mass spectrometry. Proc. Combust. Inst. 34, 33–63 (2013).

    Article  Google Scholar 

  54. Curtiss, L. A., Raghavachari, K., Redfern, P. C., Rassolov, V. & Pople, J. A. Gaussian-3 (G3) theory for molecules containing first and second-row atoms. J. Chem. Phys. 109, 7764–7776 (1998).

    Article  ADS  Google Scholar 

  55. Curtiss, L. A., Raghavachari, K., Redfern, P. C., Baboul, A. G. & Pople, J. A. Gaussian-3 theory using coupled cluster energies. Chem. Phys. Lett. 314, 101–107 (1999).

    Article  ADS  Google Scholar 

  56. Baboul, A. G., Curtiss, L. A., Redfern, P. C. & Raghavachari, K. Gaussian-3 theory using density functional geometries and zero-point energies. J. Chem. Phys. 110, 7650–7657 (1999).

    Article  ADS  Google Scholar 

  57. Frisch, M. J. et al. Gaussian 09 Revision A.1 (Gaussian Inc., Wallingford, CT, 2009).

  58. Georgievskii, Y., Miller, J. A., Burke, M. P. & Klippenstein, S. J. Reformulation and solution of the master equation for multiple-well chemical reactions. J. Phys. Chem. A 117, 12146–12154 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the US Department of Energy, Basic Energy Sciences DE-FG02-03ER15411 (experimental studies), DE-FG02-04ER15570 (computational studies) and DE-SC0010409 (synthesis of precursor molecules) to the University of Hawaii, to Florida International University, and the University of California Berkeley, respectively. M.A., U.A., B.X. and the experiments at the chemical dynamics beamline at the ALS were supported by the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under contract no. DE-AC02-05CH11231, through the Gas Phase Chemical Physics Program, Chemical Sciences Division. D.J. acknowledges support through a National Science Foundation Graduate Research Fellowship under grant no. DGE-1106400. The authors also thank X. Tielens (University of Leiden, The Netherlands) for helpful discussions.

Author information

Authors and Affiliations

Authors

Contributions

D.J. and G.V. synthesized the molecular precursor; L.Z., B.X. and U.A. carried out the experimental measurements; L.Z. performed the data analysis; A.M.M. carried out the theoretical analysis; R.I.K., A.M.M. and M.A. discussed the data; F.R.F. supervised the synthesis of the molecular precursor; and R.I.K. designed the experiments and wrote the manuscript.

Corresponding author

Correspondence to Ralf I. Kaiser.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–11, Supplementary Table 1, Supplementary text

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, L., Kaiser, R.I., Xu, B. et al. Pyrene synthesis in circumstellar envelopes and its role in the formation of 2D nanostructures. Nat Astron 2, 413–419 (2018). https://doi.org/10.1038/s41550-018-0399-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-018-0399-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing