Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Magnetic field strength of a neutron-star-powered ultraluminous X-ray source


Ultraluminous X-ray sources (ULXs) are bright X-ray sources in nearby galaxies not associated with the central supermassive black hole. Their luminosities imply they are powered by either an extreme accretion rate onto a compact stellar remnant, or an intermediate mass (~100–105 M) black hole1. Recently detected coherent pulsations coming from three bright ULXs2,3,4,5 demonstrate that some of these sources are powered by accretion onto a neutron star, implying accretion rates significantly in excess of the Eddington limit, a high degree of geometric beaming, or both. The physical challenges associated with the high implied accretion rates can be mitigated if the neutron star surface field is very high (1014 G)6, since this suppresses the electron scattering cross-section, reducing the radiation pressure that chokes off accretion for high luminosities. Surface magnetic field strengths can be determined through cyclotron resonance scattering features7,8 produced by the transition of charged particles between quantized Landau levels. Here, we present the detection at a significance of 3.8σ of an absorption line at 4.5 keV in the Chandra spectrum of a ULX in M51. This feature is likely to be a cyclotron resonance scattering feature produced by the strong magnetic field of a neutron star. Assuming scattering off electrons, the magnetic field strength is implied to be ~1011 G, while protons would imply a magnetic field of B ~ 1015 G.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Observational information on ULX8.


  1. Farrell, S. A., Webb, N. A., Barret, D., Godet, O. & Rodrigues, J. M. An intermediate-mass black hole of over 500 solar masses in the galaxy ESO243-49. Nature 460, 73–75 (2009).

    Article  ADS  Google Scholar 

  2. Bachetti, M. et al. An ultraluminous X-ray source powered by an accreting neutron star. Nature 514, 202–204 (2014).

    Article  ADS  Google Scholar 

  3. Fürst, F. et al. Discovery of coherent pulsations from the ultraluminous X-ray source NGC 7793 P13. Astrophys. J. 831, L14 (2016).

    Article  ADS  Google Scholar 

  4. Israel, G. L. et al. Discovery of a 0.42-s pulsar in the ultraluminous X-ray source NGC 7793 P13. Mon. Not. R. Astron. Soc. 466, L48–L52 (2017).

    Article  ADS  Google Scholar 

  5. Israel, G. L. et al. An accreting pulsar with extreme properties drives an ultraluminous X-ray source in NGC 5907. Science 355, 817–819 (2017).

    Article  ADS  Google Scholar 

  6. Dall’Osso, S., Perna, R. & Stella, L. NuSTAR J095551+6940.8: a highly magnetized neutron star with super-Eddington mass accretion. Mon. Not. R. Astron. Soc. 449, 2144–2150 (2015).

    Article  ADS  Google Scholar 

  7. Gnedin, I. N. & Sunyaev, R. A. Polarization of optical and X-radiation from compact thermal sources with magnetic field. Astron. Astrophys. 36, 379–394 (1974).

    ADS  Google Scholar 

  8. Truemper, J. et al. Evidence for strong cyclotron line emission in the hard X-ray spectrum of Hercules X-1. Astrophys. J. 219, L105–L110 (1978).

    Article  ADS  Google Scholar 

  9. Palumbo, G. G. C., Fabbiano, G., Trinchieri, G. & Fransson, C. An X-ray study of M51 (NGC 5194) and its companion (NGC 5195). Astrophys. J. 298, 259–267 (1985).

    Article  ADS  Google Scholar 

  10. McQuinn, K. B. W., Skillman, E. D., Dolphin, A. E., Berg, D. & Kennicutt, R. The distance to M51. Astrophys. J. 826, 21 (2016).

    Article  ADS  Google Scholar 

  11. Liu, Q. Z. & Mirabel, I. F. A catalogue of ultraluminous X-ray sources in external galaxies. Astron. Astrophys. 429, 1125–1129 (2005).

    Article  ADS  Google Scholar 

  12. Dewangan, G. C., Griffiths, R. E., Choudhury, M., Miyaji, T. & Schurch, N. J. XMM-Newton view of the ultraluminous X-ray sources in M51. Astrophys. J. 635, 198–213 (2005).

    Article  ADS  Google Scholar 

  13. Gladstone, J. C., Roberts, T. P. & Done, C. The ultraluminous state. Mon. Not. R. Astron. Soc. 397, 1836–1851 (2009).

    Article  ADS  Google Scholar 

  14. Pinto, C., Middleton, M. J. & Fabian, A. C. Resolved atomic lines reveal outflows in two ultraluminous X-ray sources. Nature 533, 64–67 (2016).

    Article  ADS  Google Scholar 

  15. Walton, D. J. et al. An iron K component to the ultrafast outflow in NGC 1313 X-1. Astrophys. J. 826, L26 (2016).

    Article  ADS  Google Scholar 

  16. Lusso, E. et al. The bolometric output and host-galaxy properties of obscured AGN in the XMM-COSMOS survey. Astron. Astrophys. 534, A110 (2011).

    Article  Google Scholar 

  17. Heida, M. et al. Near-infrared counterparts of ultraluminous X-ray sources. Mon. Not. R. Astron. Soc. 442, 1054–1067 (2014).

    Article  ADS  Google Scholar 

  18. Jaisawal, G. K. & Naik, S. Detection of cyclotron resonance scattering feature in high-mass X-ray binary pulsar SMC X-2. Mon. Not. R. Astron. Soc. 461, L97–L101 (2016).

    Article  ADS  Google Scholar 

  19. Tsygankov, S. S., Lutovinov, A. A., Churazov, E. M. & Sunyaev, R. A. V0332+53 in the outburst of 2004-2005: luminosity dependence of the cyclotron line and pulse profile. Mon. Not. R. Astron. Soc. 371, 19–28 (2006).

    Article  ADS  Google Scholar 

  20. Ibrahim, A. I. et al. Discovery of cyclotron resonance features in the soft gamma repeater SGR 1806-20. Astrophys. J. 574, L51–L55 (2002).

    Article  ADS  Google Scholar 

  21. Tiengo, A. et al. A variable absorption feature in the X-ray spectrum of a magnetar. Nature 500, 312–314 (2013).

    Article  ADS  Google Scholar 

  22. Kouveliotou, C. et al. An X-ray pulsar with a superstrong magnetic field in the soft γ-ray repeater SGR1806 – 20. Nature 393, 235–237 (1998).

    Article  ADS  Google Scholar 

  23. Bezchastnov, V. G., Pavlov, G. G., Shibanov, Y. A. & Zavlin, V. E. Radiative opacities and photosphere models for soft gamma repeaters. AIP Conf. Proc 384, 907–912 (1996).

    Article  ADS  Google Scholar 

  24. Zane, S., Turolla, R., Stella, L. & Treves, A. Proton cyclotron features in thermal spectra of ultramagnetized neutron stars. Astrophys. J. 560, 384–389 (2001).

    Article  ADS  Google Scholar 

  25. Ho, W. C. G. & Lai, D. Atmospheres and spectra of strongly magnetized neutron stars. Mon. Not. R. Astron. Soc. 327, 1081–1096 (2001).

    Article  ADS  Google Scholar 

  26. Potekhin, A. Y. & Lai, D. Statistical equilibrium and ion cyclotron absorption/emission in strongly magnetized plasmas. Mon. Not. R. Astron. Soc. 376, 793–808 (2007).

    Article  ADS  Google Scholar 

  27. Araya, R. A. & Harding, A. K. Cyclotron line features from near-critical magnetic fields: the effect of optical depth and plasma geometry. Astrophys. J. 517, 334–354 (1999).

    Article  ADS  Google Scholar 

  28. Kuntz, K. D., Long, K. S. & Kilgard, R. E. A deep Chandra ACIS survey of M51. Astrophys. J. 827, 46 (2016).

    Article  ADS  Google Scholar 

Download references


M.J.M. and D.J.W. appreciate support from Ernest Rutherford Science and Technology Facilities Council fellowships. The work of D.S. was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

Author information

Authors and Affiliations



M. Brightman reduced and analysed the Chandra and XMM-Newton data. F.F. performed timing analysis of the Chandra and XMM-Newton data. M.H. analysed the ULX multiwavelength counterpart. M. Brightman, F.A.H., F.F., M.J.M., D.J.W., A.C.F., D.B. and M. Bachetti interpreted the results. M. Brightman, F.A.H., D.J.W. and D.S. prepared the manuscript.

Corresponding author

Correspondence to M. Brightman.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Brightman, M., Harrison, F.A., Fürst, F. et al. Magnetic field strength of a neutron-star-powered ultraluminous X-ray source. Nat Astron 2, 312–316 (2018).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing