Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

An infrared measurement of chemical desorption from interstellar ice analogues

Abstract

In molecular clouds at temperatures as low as 10 K, all species except hydrogen and helium should be locked in the heterogeneous ice on dust grain surfaces. Nevertheless, astronomical observations have detected over 150 different species in the gas phase in these clouds. The mechanism by which molecules are released from the dust surface below thermal desorption temperatures to be detectable in the gas phase is crucial for understanding the chemical evolution in such cold clouds. Chemical desorption, caused by the excess energy of an exothermic reaction, was first proposed as a key molecular release mechanism almost 50 years ago1. Chemical desorption can, in principle, take place at any temperature, even below the thermal desorption temperature. Therefore, astrochemical network models commonly include this process2,3. Although there have been a few previous experimental efforts4,5,6, no infrared measurement of the surface (which has a strong advantage to quantify chemical desorption) has been performed. Here, we report the first infrared in situ measurement of chemical desorption during the reactions H + H2S → HS + H2 (reaction 1) and HS + H → H2S (reaction 2), which are key to interstellar sulphur chemistry2,3. The present study clearly demonstrates that chemical desorption is a more efficient process for releasing H2S into the gas phase than was previously believed. The obtained effective cross-section for chemical desorption indicates that the chemical desorption rate exceeds the photodesorption rate in typical interstellar environments.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: FTIR spectra of samples.
Fig. 2: Variations in the relative abundance of solid H2S on ASW with relevance to H atom exposure times.
Fig. 3: TPD spectra.
Fig. 4: Difference spectra of solid H2S after exposure to D atoms for varying lengths of time on ASW.

References

  1. 1.

    Williams, D. A. Physical adsorption processes on interstellar graphite grains. Astrophys. J. 151, 935–943 (1968).

    ADS  Article  Google Scholar 

  2. 2.

    Garrod, R. T., Wakelam, V. & Herbst, E. Non-thermal desorption from interstellar dust grains via exothermic surface reactions. Astron. Astrophys. 467, 1103–1115 (2007).

    ADS  Article  Google Scholar 

  3. 3.

    Vidal, T. H. G. et al. On the reservoir of sulphur in dark clouds: chemistry and elemental abundance reconciled. Mon. Not. R. Astron. Soc. 489, 435–447 (2017).

    ADS  Article  Google Scholar 

  4. 4.

    Dulieu, F. et al. How micron-sized dust particles determine the chemistry of our Universe. Sci. Rep. 3, 1338 (2013).

    Article  Google Scholar 

  5. 5.

    Minissale, M., Dulieu, F., Cazaux, S. & Hocuk, S. Dust as interstellar catalyst. I. Quantifying the chemical desorption process. Astron. Astrophys. 585, A24 (2016).

    ADS  Article  Google Scholar 

  6. 6.

    He, J., Emtiza, S. M. & Vidali, G. Mechanism of atomic hydrogen addition reactions on np-ASW. Astrophys. J. 851, 104 (2017).

    ADS  Article  Google Scholar 

  7. 7.

    Tielens, A. G. G. M. The molecular universe. Rev. Mod. Phys. 85, 1021–1081 (2013).

    ADS  Article  Google Scholar 

  8. 8.

    Hama, T. & Watanabe, N. Surface processes on interstellar amorphous solid water: adsorption, diffusion, tunneling reactions, and nuclear-spin conversion. Chem. Rev. 113, 8783–8839 (2013).

    Article  Google Scholar 

  9. 9.

    van Dishoeck, E. F., Herbst, E. & Neufeld, D. A. Interstellar water chemistry: from laboratory to observations. Chem. Rev. 113, 9043–9085 (2013).

  10. 10.

    Hama, T. et al. A desorption mechanism of water following vacuum-ultraviolet irradiation on amorphous solid water at 90 K. J. Chem. Phys. 132, 164508 (2010).

    ADS  Article  Google Scholar 

  11. 11.

    Fayolle, E. C. et al. CO ice photodesorption: a wavelength-dependent study. Astrophys. J. Lett. 739, L36 (2011).

    ADS  Article  Google Scholar 

  12. 12.

    Muñoz Caro, G. M. et al. New results on thermal and photodesorption of CO ice using the novel InterStellar Astrochemistry Chamber (ISAC). Astron. Astrophys. 522, A108 (2010).

    Article  Google Scholar 

  13. 13.

    Cuppen, H. H. et al. Grain surface models and data for astrochemistry. Space Sci. Rev. 212, 1–58 (2017).

    ADS  Article  Google Scholar 

  14. 14.

    Watanabe, N., Nagaoka, A., Shiraki, T. & Kouchi, A. Hydrogenation of CO on pure solid CO and CO–H2O mixed ice. Astrophys. J. 616, 638–642 (2004).

    ADS  Article  Google Scholar 

  15. 15.

    Hidaka, H., Miyauchi, N., Kouchi, A. & Watanabe, N. Structural effects of ice grain surfaces on the hydrogenation of CO at low temperatures. Chem. Phys. Lett. 456, 36–40 (2008).

    ADS  Article  Google Scholar 

  16. 16.

    Lamberts, T. & Kästner, J. Tunneling reaction kinetics for the hydrogen abstraction reaction H + H2S → H2 + HS in the interstellar medium. J. Phys. Chem. A 121, 9736–9741 (2017).

    Article  Google Scholar 

  17. 17.

    Qi, J., Lu, D., Song, H., Li, J. & Yang, M. Quantum and quasiclassical dynamics of the multi-channel H + H2S reaction. J. Chem. Phys. 146, 124303 (2017).

    ADS  Article  Google Scholar 

  18. 18.

    Fathe, K., Holt, J. S., Oxley, S. P. & Pursell, C. J. Infrared spectroscopy of solid hydrogen sulfide and deuterium sulfide. J. Phys. Chem. A 110, 10793–10798 (2006).

    Article  Google Scholar 

  19. 19.

    Jiménez-Escobar, A. & Muñoz Caro, G. M. Sulfur depletion in dense clouds and circumstellar regions. I. H2S ice abundance and UV-photochemical reactions in the H2O-matrix. Astron. Astrophys. 536, A91 (2011).

    Article  Google Scholar 

  20. 20.

    Collings, M. P. et al. A laboratory survey of the thermal desorption of astrophysically relevant molecules. Mon. Not. R. Astron. Soc. 354, 1133–1140 (2004).

    ADS  Article  Google Scholar 

  21. 21.

    Watanabe, N. et al. Direct measurements of hydrogen atom diffusion and the spin temperature of nascent H2 molecule on amorphous solid water. Astrophys. J. Lett. 714, L233–L237 (2010).

    ADS  Article  Google Scholar 

  22. 22.

    van der Tak, F. F. S., Boonmanm, A. M. S., Braakman, R. & van Dishoeck, E. F. Sulphur chemistry in the envelopes of massive young stars. Astron. Astrophys. 412, 133–145 (2003).

  23. 23.

    Woods, P. M. et al. A new study of an old sink of sulphur in hot molecular cores: the sulphur residue. Mon. Not. R. Astron. Soc. 450, 1256–1267 (2015).

    ADS  Article  Google Scholar 

  24. 24.

    Taquet, V., Charnley, S. B. & Sipilä, O. Multilayer formation and evaporatin of deuterated ices in prestellar and protostellar cores. Astrophys. J. 791, 1 (2014).

    ADS  Article  Google Scholar 

  25. 25.

    Calmonte, U. et al. Sulphur-bearing species in the coma of comet 67P/Churyumov–Gerasimenko. Mon. Not. R. Astron. Soc. 462, S253–S273 (2016).

    Article  Google Scholar 

  26. 26.

    Esplugues, G. B., Viti, S., Goicoechea, J. R. & Cernicharo, J. Modelling the sulphur chemistry evolution in Orion KL. Astron. Astrophys. 567, A95 (2014).

    ADS  Article  Google Scholar 

  27. 27.

    Holdship, J. et al. H2S in the L1157-B1 bow shock. Mon. Not. R. Astron. Soc. 463, 802–810 (2016).

    ADS  Article  Google Scholar 

  28. 28.

    Cruz-Diaz, G. A., Muñoz Caro, G. M., Chen, Y.-J. & Yih, T.-S. Vacuum-UV spectroscopy of interstellar ice analogs I. Absorption cross-sections of polar-ice molecules. Astron. Astrophys. 562, A119 (2014).

    ADS  Article  Google Scholar 

  29. 29.

    Prasad, S. S. & Tarafdar, S. P. UV radication field inside dense clouds: its possible existence and chemical implications. Astrophys. J. 267, 603–609 (1983).

    ADS  Article  Google Scholar 

  30. 30.

    Shen, C. J., Greenberg, J. M., Schutte, W. A. & van Dishoeck, E. F. Cosmic ray induced explosive chemical desorption in dense clouds. Astron. Astrophys. 415, 203–215 (2004).

    ADS  Article  Google Scholar 

  31. 31.

    Gerakines, P. A., Schutte, W. A., Greenberg, J. M. & van Dishoeck, E. F. The infrared band strengths of H2O, CO and CO2 in laboratory simulations of astrophysical ice mixtures. Astron. Astrophys. 296, 810–818 (1995).

    ADS  Google Scholar 

  32. 32.

    Hama, T. et al. The mechanism of surface diffusion of H and D atoms on amorphous solid water: existence of various potential sites. Astrophys. J. 757, 185 (2012).

    ADS  Article  Google Scholar 

  33. 33.

    Miyauchi, N. et al. Formation of hydrogen peroxide and water from the reaction of cold hydrogen atoms with solid oxygen at 10 K. Chem. Phys. Lett. 456, 27–30 (2008).

    ADS  Article  Google Scholar 

  34. 34.

    Oba, Y., Osaka, K., Watanabe, N., Chigai, T. & Kouchi, A. Reaction kinetics and isotope effect of water formation by the surface reaction of solid H2O2 with H atoms at low temperatures. Faraday Discuss. 168, 185–204 (2014).

    ADS  Article  Google Scholar 

  35. 35.

    Minissale, M. & Dulieu, F. Influence of surface coverage on the chemical desorption process. J. Chem. Phys. 141, 014304 (2014).

    ADS  Article  Google Scholar 

  36. 36.

    Minissale, M., Moudens, A., Baouche, S., Chaabouni, H. & Dulieu, F. Hydrogenation of CO-bearing species on grains: unexpected chemical desorption of CO. Mon. Not. R. Astron. Soc. 458, 2953–2961 (2016).

    ADS  Article  Google Scholar 

  37. 37.

    Watanabe, N. & Kouchi, A. Ice surface reactions: a key to chemical evolution in space. Prog. Surf. Sci. 83, 439–489 (2008).

    ADS  Article  Google Scholar 

  38. 38.

    Zhao, Y. & Truhlar, D. G. Hybrid meta density functional theory methods for thermochemistry, thermochemical kinetics, and noncovalent interactions: the MPW1B95 and MPWB1K models and comparative assessments for hydrogen bonding and van der Waals interactions. J. Chem. Phys. A 108, 6908–6918 (2004).

    Article  Google Scholar 

  39. 39.

    Weigend, F., Häser, M., Patzelt, H. & Ahlrichs, R. RI-MP2: optimized auxiliary basis sets and demonstration of efficiency. Chem. Phys. Lett. 294, 143–152 (1998).

    ADS  Article  Google Scholar 

  40. 40.

    Frisch, M. J. et al. Gaussian 09 Revision D.01 (Gaussian, Wallingford, CT, 2016).

    Google Scholar 

Download references

Acknowledgements

The authors thank H. Hidaka, T. Hama and J. Kästner for discussions about chemical desorption. This work was partly supported by a Japan Society for the Promotion of Science Grant-in-Aid for Specially Promoted Research (JP17H06087) and Grant-in-Aid for Young Scientists (A) (JP26707030). Computational resources were provided by the state of Baden-Württemberg through bwHPC and the German Research Foundation through grant number INST 40/467-1 FUGG.

Author information

Affiliations

Authors

Contributions

Y.O. planned the experiments in consultation with N.W. and A.K. Y.O. and T.T. performed the experiments. T.L. performed the computational calculations on binding energy. All authors discussed the results. Y.O., T.L. and N.W. wrote the paper.

Corresponding author

Correspondence to Y. Oba.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–3, Supplementary Table 1

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Oba, Y., Tomaru, T., Lamberts, T. et al. An infrared measurement of chemical desorption from interstellar ice analogues. Nat Astron 2, 228–232 (2018). https://doi.org/10.1038/s41550-018-0380-9

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing