Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Atomic oxygen ions as ionospheric biomarkers on exoplanets

Subjects

Abstract

The ionized form of atomic oxygen (O+) is the dominant ion species at the altitude of maximum electron density in only one of the many ionospheres in our Solar System — Earth’s. This ionospheric composition would not be present if oxygenic photosynthesis was not an ongoing mechanism that continuously impacts the terrestrial atmosphere. We propose that dominance of ionospheric composition by O+ ions at the altitude of maximum electron density can be used to identify a planet in orbit around a solar-type star where global-scale biological activity is present. There is no absolute numerical value required for this suggestion of an atmospheric plasma biomarker — only the dominating presence of O+ ions at the altitude of peak electron density.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Vertical profiles of the abundances of the main gases and ions in the atmospheres of Venus, Earth and Mars.

Similar content being viewed by others

References

  1. Kasting, J. How to Find a Habitable Planet. (Princeton Univ. Press, Princeton, NJ, 2012).

    Google Scholar 

  2. Fahey, D. W. & Hegglin, M. I. Twenty Questions and Answers About the Ozone Layer: 2010 Update Q1 (World Meteorological Organization, 2011); http://go.nature.com/2Daamqn

  3. Charbonneau, D., Brown, T., Noyes, R. & Gilliland, R. Detection of an extrasolar planet atmosphere. Astrophys. J. 568, 377–384 (2002).

    Article  ADS  Google Scholar 

  4. Lammer, H. et al. Geophysical and atmospheric evolution of habitable planets. Astrobiology 10, 45–68 (2010).

    Article  ADS  Google Scholar 

  5. Crossfield, I. Observations of exoplanet atmospheres. Publ. Astron. Soc. Pacif. 127, 941–960 (2015).

    Article  ADS  Google Scholar 

  6. Schulze-Makuch, D. et al. A two-tiered approach to assessing the habitability of exoplanets. Astrobiology 11, 1041–1052 (2011).

    Article  ADS  Google Scholar 

  7. Seager, S., Bains, W. & Petkowski, J. J. Toward a list of molecules as potential biosignature gases for the search of life on exoplanets and applications to terrestrial biochemistry. Astrobiology 16, 465–485 (2016).

    Article  ADS  Google Scholar 

  8. Kreidberg, L. & Loeb, A. Prospects for characterizing the atmosphere of Proxima Centauri b. Astrophys. J. Lett. 832, L12 (2016).

    Article  ADS  Google Scholar 

  9. Livio, M. & Silk, J. Where are they? Phys. Today 70, 50 (March, 2017).

  10. Dressing, C. & Charbonneau, D. The occurrence of potentially habitable planets orbiting M dwarfs: Estimates from the full Kepler dataset and an empirical measurement of the detection sensitivity. Astrophys. J. 807, 45 (2015).

    Article  ADS  Google Scholar 

  11. Garcia-Sage, K., Glocer, A., Drake, J., Gronoff, G. & Cohen, O. On the magnetic protection of the atmosphere of Proxima Centauri b. Astrophys. J. Lett. 844, L13 (2017).

    Article  ADS  Google Scholar 

  12. Tian, F. Thermal escape from super Earth atmosphere in the habitable zones of M stars. Astrophys. J. 703, 905–909 (2009).

    Article  ADS  Google Scholar 

  13. Tian, F. History of water loss and atmospheric O2 buildup on rocky exoplanets near M dwarfs. Earth Planet. Sci. Lett. 432, 126–132 (2015).

    Article  ADS  Google Scholar 

  14. Luger, R. & Barnes, R. Extreme water loss and abiotic O2 buildup on planets throughout the habitable zone of M dwarfs. Astrobiology 15, 119–143 (2015).

    Article  ADS  Google Scholar 

  15. Tian, F. & Ida, S. Water contents of Earth-mass planets around M dwarfs. Nat. Geosci. 8, 177–180 (2015).

    Article  ADS  Google Scholar 

  16. Schaefer, L., Wordsworth, R., Berta-Thompson, Z. & Sasselov, D. Predictions of the atmospheric composition of GJ 1132b. Astrophys. J. 829, 63 (2016).

    Article  ADS  Google Scholar 

  17. Chadney, J. et al. EUV-driven ionospheres and electron transport on extrasolar giant planets orbiting active stars. Astron. Astrophys. 587, A87 (2016).

    Article  Google Scholar 

  18. Airapetian, V. A. et al. How hospitable are space weather affected habitable zone? The role of ion escape. Astrophys. J. Lett. 836, L3 (2017).

    Article  ADS  Google Scholar 

  19. Gillon, M. et al. Seven temperate terrestrial planets around the nearby ultracool dwarf star TRAPPIST-1. Nature 542, 456–460 (2017).

    Article  ADS  Google Scholar 

  20. Schunk, R. & Nagy, A. Ionospheres: Physics, Plasma Physics, and Chemistry 2nd ed, (Cambridge University Press, Cambridge, 2009).

    Book  Google Scholar 

  21. Yung, Y. L. & DeMore, W. B. Photochemistry of Atmospheres (Oxford University Press, Oxford, 1998).

    Google Scholar 

  22. Mendillo, M. et al. Comparative Aeronomy: Molecular ionospheres at Earth and Mars. J. Geophys. Res. Space Phys. 121, 10269–10288 (2016).

    Article  ADS  Google Scholar 

  23. Bougher, S. et al. Early MAVEN Deep Dip campaign reveals thermosphere and ionosphere variability. Science 350, aad0459 (2015).

    Article  Google Scholar 

  24. Clancey, R. T. et al. Daily global mapping of Mars ozone column abundances with MARCI UV band imaging. Icarus 266, 112–133 (2016).

    Article  ADS  Google Scholar 

  25. Catling, D. C. Astrobiology: A Very Short Introduction. (Oxford Univ. Press, Oxford, 2013).

    Book  Google Scholar 

  26. Catling, D. C. & Kasting, J. Atmospheric Evolution on Inhabited and Lifeless Worlds Fig. 10.1. (Cambridge Univ. Press, Cambridge, 2017).

    Book  Google Scholar 

  27. Walker, J. C. G. in The Natural Environment and the Biogeochemical Cycles 87–104 (Springer, Berlin, 1980).

  28. Moore, L., Mendillo, M., Muller-Wödarg, I. & Murr, D. Modeling of global variations and ring shadowing in Saturn’s ionosphere. Icarus 172, 503–520 (2004).

    Article  ADS  Google Scholar 

  29. Cui, J. et al. Diurnal variation of Titan’s ionosphere. J. Geophys. Res. Atmos. 114, A6 (2009).

    Article  Google Scholar 

  30. Summers, M. E. & Strobel, D. F. Photochemistry and vertical transport of Io’s atmosphere and ionosphere. Icarus 120, 290–316 (1996).

    Article  ADS  Google Scholar 

  31. Majeed, T. et al. The ionosphere of Triton. Geophys. Res. Lett. 17, 1721–1724 (1990).

    Article  ADS  Google Scholar 

  32. Matta, M., Withers, P. & Mendillo, M. The composition of Mars’ topside ionosphere: Effects of hydrogen. J. Geophys. Res. 118, 2681–2693 (2013).

    Article  Google Scholar 

  33. Owen, T. in Strategies for the Search for Life in the Universe 177–185 (Springer, Dordrecht, 1980).

  34. Segura, A. et al. Ozone concentrations and ultraviolet fluxes on Earth-like planets around other stars. Astrobiology 3, 689–708 (2004).

    Article  ADS  Google Scholar 

  35. Léger, A. et al. Is the presence of oxygen on an exoplanet a reliable biosignature? Astrobiology 11, 335–341 (2011).

    Article  ADS  Google Scholar 

  36. Kasting, J. F. Habitable zones around low mass stars and the search for extraterrestrial life. Orig. Life Evol. Biosph. 27, 291–307 (1997).

    Article  ADS  Google Scholar 

  37. Selsis, F., Despois, D. & Parisot, J.-P. Signatures of life on exoplanets: Can Darwin produce false positive detections? Astron. Astrophys. 388, 985–1003 (2002).

    Article  ADS  Google Scholar 

  38. Withers, P. & Vogt, M. F. Occultations of astrophysical radio sources as probes of planetary environments: A case study of Jupiter and possible applications to exoplanets. Astrophys. J. 836, 114 (2017).

    Article  ADS  Google Scholar 

  39. Grima, C., Blankenship, D. & Schroeder, D. Radar signal propagation through the ionosphere of Europa. Planet. Space Sci. 117, 421–428 (2015).

    Article  ADS  Google Scholar 

  40. Robinson, T. D. et al. Detection of ocean glint and ozone absorption using LCROSS Earth observations. Astrophys. J. 787, 171 (2014).

    Article  ADS  Google Scholar 

  41. Meier, R. Ultraviolet spectroscopy and remote sensing of the upper atmosphere. Space Sci. Rev. 58, 1–185 (1991).

    Article  ADS  Google Scholar 

  42. Kumar, S., Chakrabarti, S., Paresce, F. & Bowyer, S. The O+ 834-A dayglow: Satellite observations and interpretation with a radiative transfer model. J. Geophys. Res. 88, 9271–9279 (1983).

    Article  ADS  Google Scholar 

  43. Gruntman, M. & Fahr, H. Heliopause imaging in EUV: Oxygen O+ 83.4 nm resonance line emission. J. Geophys. Res. 105, 5189–5200 (2000).

    Article  ADS  Google Scholar 

  44. Makela, J. J., Kelley, M. C., González, S. A., Aponte, N. & McCoy, R. P. Ionospheric topography maps using multi-wavelength all-sky images. J. Geophys. Res. 106, A12 (2001).

    Article  Google Scholar 

  45. Mendillo, M., Spence, H. & Zalezak, S. Simulation studies of ionospheric airglow signatures of plasma depletions at the equator. J. Atmos. Terr. Phys. 47, 885–893 (1985).

    Article  ADS  Google Scholar 

  46. Lugar, R. et al. The Pale Green Dot: A method to characterize Proxima Centauri b using exo-aurorae. Astrophys. J. 837, 63 (2017).

    Article  ADS  Google Scholar 

  47. Rezac, L. et al. First detection of the 63 μm atomic oxygen line in the thermosphere of Mars with GREAT/SOFIA. Astron. Astrophys. 580, L10 (2015).

    Article  ADS  Google Scholar 

  48. Pallé, E. et al. Earth’s transmission spectrum from lunar eclipse observations. Nature 459, 814–816 (2009).

    Article  ADS  Google Scholar 

  49. Chen, R. H., Cravens, T. E. & Nagy, A. F. The martian ionosphere in light of the Viking observations. J. Geophys. Res. 83, A8 (1978).

    Google Scholar 

  50. Nagy, A., Cravens, T., Smith, S., Taylor, H. & Brinton, H. Model calculations of the dayside ionosphere of Venus: Ionic composition. J. Geophys. Res. 85, A13 (1980).

    Article  Google Scholar 

  51. Hedin, A. E., Niemann, H. B., Kasprzak, W. T. & Seiff, A. Global empirical model of the Venus thermosphere. J. Geophys. Res. 88, 73–83 (1983).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported, in part, by an NSF INSPIRE grant to Boston University (Comparative Ionospheric Science: Earth, Solar System and Exoplanets; AST-1545581). We are pleased to acknowledge the thoughtful comments and suggestions by S. Chakrabarti (University of Massachusetts, Lowell). In addition, we thank the following colleagues at Boston University for helpful discussions dealing with early versions of the manuscript: J. Clarke, J. Semeter, M. Mayyasi, L. Moore, and J. Baumgardner and P. Muirhead; at the University of Massachusetts, Lowell: C. Mendillo, and S. Finn; and e-mail correspondents L. Rezac (Max-Planck Institute for Solar System Physics, Germany), J. Kasting (Penn State University), and B. Jakosky (University of Colorado, Boulder). J. Trovato helped with figure preparation.

Author information

Authors and Affiliations

Authors

Contributions

M.M. wrote the draft manuscript, providing its focus on the unique properties of Earth’s ionosphere and its observational methods; P.W. provided input on planetary atmospheres (Venus and Mars), and P.A.D. provided input on exoplanet atmospheres.

Corresponding author

Correspondence to Michael Mendillo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mendillo, M., Withers, P. & Dalba, P.A. Atomic oxygen ions as ionospheric biomarkers on exoplanets. Nat Astron 2, 287–291 (2018). https://doi.org/10.1038/s41550-017-0375-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-017-0375-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing