The unexpectedly large dust and gas content of quiescent galaxies at z > 1.4

Abstract

Early-type galaxies (ETGs) contain most of the stars present in the local Universe and, above a stellar mass content of ~5 × 1010 solar masses, vastly outnumber spiral galaxies such as the Milky Way. These massive spheroidal galaxies have, in the present day, very little gas or dust in proportion to their mass1, and their stellar populations have been evolving passively for over 10 billion years. The physical mechanisms that led to the termination of star formation in these galaxies and depletion of their interstellar medium remain largely conjectural. In particular, there are currently no direct measurements of the amount of residual gas that might still be present in newly quiescent spheroidals at high redshift2. Here we show that quiescent ETGs at redshift z ~ 1.8, close to their epoch of quenching, contained at least two orders of magnitude more dust at a fixed stellar mass compared with local ETGs. This implies the presence of substantial amounts of gas (5–10%), which has been consumed less efficiently than in more active galaxies, probably due to their spheroidal morphology, consistent with our simulations. This lower star formation efficiency, combined with an extended hot gas halo possibly maintained by persistent feedback from an active galactic nucleus, keep ETGs mostly passive throughout cosmic time.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Mid-infrared to radio SED of 24 μm-undetected BzK + UVJ-selected passive galaxies.
Fig. 2: Evolution of the molecular gas fraction M mol/M * as a function of redshift for both quiescent and MS galaxies.
Fig. 3: Galactic SFRs.
Fig. 4: SFE as a function of gas fraction in high-resolution hydrodynamic simulations.

References

  1. 1.

    Lianou, S., Xilouris, E., Madden, S. & Barmby, P. The dustier early-type galaxies deviate from late-type galaxies’ scaling relations. Mon. Not. R. Astron. Soc. 461, 2856–2866 (2016).

    ADS  Article  Google Scholar 

  2. 2.

    Sargent, M. T. et al. A direct constraint on the gas content of a massive, passively evolving elliptical galaxy at z = 1.43. Astrophys. J. Lett. 806, 6 (2015).

    Article  Google Scholar 

  3. 3.

    Gobat, R. et al. The early early type: discovery of a passive galaxy at z spec ~ 3. Astrophys. J. Lett. 759, 5 (2012).

    Article  Google Scholar 

  4. 4.

    Glazebrook, K. et al. A massive, quiescent galaxy at redshift of z = 3.717. Nature 544, 71–74 (2017).

    ADS  Article  Google Scholar 

  5. 5.

    Di Matteo, T., Springel, V. & Hernquist, L. Energy input from quasars regulates the growth and activity of black holes and their host galaxies. Nature 433, 604–607 (2005).

    ADS  Article  Google Scholar 

  6. 6.

    Birnboim, Y. & Dekel, A. Virial shocks in galactic haloes? Mon. Not. R. Astron. Soc. 345, 349–364 (2003).

    ADS  Article  Google Scholar 

  7. 7.

    Croton, D. J. et al. The many lives of active galactic nuclei: cooling flows, black holes and the luminosities and colours of galaxies. Mon. Not. R. Astron. Soc. 365, 11–28 (2006).

    ADS  Article  Google Scholar 

  8. 8.

    Martig, M., Bournaud, F., Teyssier, R. & Dekel, A. Morphological quenching of star formation: making early-type galaxies red. Astrophys. J. 707, 250–267 (2009).

    ADS  Article  Google Scholar 

  9. 9.

    Tacchella, S. et al. Evidence for mature bulges and an inside-out quenching phase 3 billion years after the Big Bang. Science 348, 314–317 (2015).

    ADS  Article  Google Scholar 

  10. 10.

    Daddi, E. et al. A new photometric technique for the joint selection of star-forming and passive galaxies at 1.4 z 2.5. Astrophys. J. 617, 746–764 (2004).

    ADS  Article  Google Scholar 

  11. 11.

    Wuyts, S. et al. What do we learn from IRAC observations of galaxies at 2 < z < 3.5? Astrophys. J. 655, 51–65 (2007).

    ADS  Article  Google Scholar 

  12. 12.

    Draine, B. T. & Li, A. Infrared emission from interstellar dust. IV. The silicate-graphite-PAH model in the post-Spitzer era. Astrophys. J. 657, 810–837 (2007).

    ADS  Article  Google Scholar 

  13. 13.

    Hwang, H. S. et al. Evolution of dust temperature of galaxies through cosmic time as seen by Herschel. Mon. Not. R. Astron. Soc. 409, 75–82 (2010).

    ADS  Article  Google Scholar 

  14. 14.

    Smith, M. W. et al. The Herschel reference survey: dust in early-type galaxies and across the Hubble sequence. Astrophys. J. 748, 25 (2012).

    Article  Google Scholar 

  15. 15.

    Magdis, G. et al. The evolving interstellar medium of star-forming galaxies since z = 2 as probed by their infrared spectral energy distributions. Astrophys. J. 760, 23 (2012).

    Article  Google Scholar 

  16. 16.

    Young, L. M. et al. The ATLAS3D project—IV. The molecular gas content of early-type galaxies. Mon. Not. R. Astron. Soc. 414, 940–967 (2011).

    ADS  Article  Google Scholar 

  17. 17.

    Young, L. M. et al. The ATLAS3D project—XXVII. Cold gas and the colours and ages of early-type galaxies. Mon. Not. R. Astron. Soc. 444, 3408–3426 (2014).

    ADS  Article  Google Scholar 

  18. 18.

    Kennicutt, R. C. Star formation in galaxies along the Hubble sequence. Annu. Rev. Astron. Astrophys. 36, 189–231 (1998).

    ADS  Article  Google Scholar 

  19. 19.

    Gobat, R. et al. In and out star formation in z ~ 1.5 quiescent galaxies from rest-frame UV spectroscopy and the far-infrared. Astron. Astrophys. 599, 12 (2017).

    Article  Google Scholar 

  20. 20.

    Saintonge, A. et al. The impact of interactions, bars, bulges, and active galactic nuclei on star formation efficiency in local massive galaxies. Astrophys. J. 758, 17 (2012).

    Article  Google Scholar 

  21. 21.

    Martig, M., Bournaud, F., Croton, D. J., Dekel, A. & Teyssier, R. A diversity of progenitors and histories for isolated spiral galaxies. Astrophys. J. 756, 29 (2012).

    Article  Google Scholar 

  22. 22.

    Johansson, P. H., Naab, T. & Ostriker, J. P. Gravitational heating helps make massive galaxies red and dead. Astrophys. J. Lett. 697, L38–L43 (2009).

    ADS  Article  Google Scholar 

  23. 23.

    Salpeter, E. E. The luminosity function and stellar evolution. Astrophys. J. 121, 161–166 (1955).

    ADS  Article  Google Scholar 

  24. 24.

    Grillo, C. & Gobat, R. On the initial mass function and tilt of the fundamental plane of massive early-type galaxies. Mon. Not. R. Astron. Soc. Lett. 402, 67–71 (2010).

    ADS  Article  Google Scholar 

  25. 25.

    Cappellari, M. et al. Systematic variation of the stellar initial mass function in early-type galaxies. Nature 484, 485–488 (2012).

    ADS  Article  Google Scholar 

  26. 26.

    Conroy, C. & van Dokkum, P. G. The stellar initial mass function in early-type galaxies from absorption line spectroscopy. II. Results. Astrophys. J. 760, 16 (2012).

    Article  Google Scholar 

  27. 27.

    Larson, D. et al. Seven-year Wilkinson microwave anisotropy probe (WMAP) observations: power spectra and WMAP–derived parameters. Astrophys. J. Suppl. S. 192, 19 (2011).

    ADS  Article  Google Scholar 

  28. 28.

    Planck Collaboration et al. Planck 2015 results. XIII. Cosmological parameters. Astron. Astrophys. 594, 63 (2015).

    Google Scholar 

  29. 29.

    Scoville, N. et al. The Cosmic Evolution Survey (COSMOS): overview. Astrophys. J. Suppl. S. 172, 1–8 (2007).

    ADS  Article  Google Scholar 

  30. 30.

    McCracken, H. J. et al. The COSMOS-WIRCam near-infrared imaging survey. I. BzK-selected passive and star-forming galaxy candidates at z 1.4. Astrophys. J. 708, 202–217 (2010).

    ADS  Article  Google Scholar 

  31. 31.

    Muzzin, A. et al. A public Ks-selected catalog in the COSMOS/UltraVISTA field: photometry, photometric redshifts, and stellar population parameters. Astrophys. J. Suppl. S. 206, 19 (2013).

    ADS  Article  Google Scholar 

  32. 32.

    Le Floc’h, E. et al. Deep Spitzer 24 μm COSMOS imaging. I. The evolution of luminous dusty galaxies—confronting the models. Astrophys. J. 703, 222–239 (2009).

    ADS  Article  Google Scholar 

  33. 33.

    Lilly, S. J. et al. zCOSMOS: a large VLT/VIMOS redshift survey covering 0 < z < 3 in the COSMOS field. Astrophys. J. Suppl. S. 172, 70–85 (2007).

    ADS  Article  Google Scholar 

  34. 34.

    Strazzullo, V. et al. Passive galaxies as tracers of cluster environments at z ~ 2. Astron. Astrophys. 576, 5 (2015).

    Article  Google Scholar 

  35. 35.

    Williams, R. J., Quadri, R. F., Franx, M., van Dokkum, P. & Labbé, I. Detection of quiescent galaxies in a bicolor sequence from z = 0–2. Astrophys. J. 691, 1879–1895 (2009).

    ADS  Article  Google Scholar 

  36. 36.

    Gobat, Retal Satellite content and quenching of star formation in galaxy groups at z ~ 1.8. Astron. Astrophys. 581, 12 (2015).

    Article  Google Scholar 

  37. 37.

    Lutz, D. et al. PACS Evolutionary Probe (PEP)—a Herschel key program. Astron. Astrophys. 532, 12 (2011).

    Article  Google Scholar 

  38. 38.

    Oliver, S. J. et al. The Herschel Multi-tiered Extragalactic Survey: HerMES. Mon. Not. R. Astron. Soc. 424, 1614–1635 (2012).

    ADS  Article  Google Scholar 

  39. 39.

    Geach, J. E. et al. The SCUBA-2 cosmology legacy survey: 850 μm maps, catalogues and number counts. Mon. Not. R. Astron. Soc. 465, 1789–1806 (2017).

    ADS  Article  Google Scholar 

  40. 40.

    Aretxaga, I. et al. AzTEC millimetre survey of the COSMOS field—III. Source catalogue over 0.72 deg2 and plausible boosting by large-scale structure. Mon. Not. R. Astron. Soc. 415, 3831–3850 (2011).

    ADS  Article  Google Scholar 

  41. 41.

    Smolčić, V. et al. The VLA-COSMOS 3 GHz large project: continuum data and source catalog release. Astron. Astrophys. 602, 19 (2017).

    Article  Google Scholar 

  42. 42.

    Schinnerer, E. et al. The VLA-COSMOS survey. IV. Deep data and joint catalog. Astrophys. J. Suppl. S. 188, 384–404 (2010).

    ADS  Article  Google Scholar 

  43. 43.

    Bruzual, G. & Charlot, S. Stellar population synthesis at the resolution of 2003. Mon. Not. R. Astron. Soc. 344, 1000–1028 (2003).

    ADS  Article  Google Scholar 

  44. 44.

    Calzetti, D. et al. The dust content and opacity of actively star-forming galaxies. Astrophys. J. 533, 682–695 (2000).

    ADS  Article  Google Scholar 

  45. 45.

    Béthermin, M. et al. Evolution of the dust emission of massive galaxies up to z = 4 and constraints on their dominant mode of star formation. Astron. Astrophys. 573, 17 (2015).

    Article  Google Scholar 

  46. 46.

    Man, A. W. S. et al. Confirming the existence of a quiescent galaxy population out to z = 3: a stacking analysis of mid-, far-infrared and radio data. Astrophys. J. 820, 14 (2016).

    ADS  Article  Google Scholar 

  47. 47.

    Viero, M. P. et al. HerMES: the contribution to the cosmic infrared background from galaxies selected by mass and redshift. Astrophys. J. 779, 23 (2013).

    ADS  Article  Google Scholar 

  48. 48.

    Bianchi, S. Vindicating single-T modified blackbody fits to Herschel SEDs. Astron. Astrophys. 552, 5 (2013).

    Article  Google Scholar 

  49. 49.

    Berta, S., Lutz, D., Genzel, R., Förster-Schreiber, N. M. & Tacconi, L. J. Measures of galaxy dust and gas mass with Herschel photometry and prospects for ALMA. Astron. Astrophys. 587, 26 (2016).

    Article  Google Scholar 

  50. 50.

    Genzel, R. et al. Combined CO and dust scaling relations of depletion time and molecular gas fractions with cosmic time, specific star-formation rate, and stellar mass. Astrophys. J. 800, 25 (2015).

    ADS  Article  Google Scholar 

  51. 51.

    Magnelli, B. et al. The far-infrared/radio correlation and radio spectral index of galaxies in the SFR-M plane up to z ~ 2. Astron. Astrophys. 573, 18 (2015).

    Article  Google Scholar 

  52. 52.

    Best, P. N. & Heckman, T. M. On the fundamental dichotomy in the local radio-AGN population: accretion, evolution and host galaxy properties. Mon. Not. R. Astron. Soc. 421, 1569–1582 (2012).

    ADS  Article  Google Scholar 

  53. 53.

    Ciotti, L. & Ostriker, J. P. Cooling flows and quasars. II. Detailed models of feedback-modulated accretion flows. Astrophys. J. 551, 131–152 (2001).

    ADS  Article  Google Scholar 

  54. 54.

    O’Dea, C. P. The compact steep-spectrum and gigahertz peaked-spectrum radio sources. Publ. Astron. Soc. Pac. 110, 493–532 (1998).

    ADS  Article  Google Scholar 

  55. 55.

    Richards, G. T. et al. Spectral energy distributions and multiwavelength selection of type 1 quasars. Astrophys. J. Suppl. S. 166, 470–497 (2006).

    ADS  Article  Google Scholar 

  56. 56.

    Yun, M. S., Reddi, N. A. & Condon, J. J. Radio properties of infrared-selected galaxies in the IRAS 2 Jy sample. Astrophys. J. 554, 803–822 (2001).

    ADS  Article  Google Scholar 

  57. 57.

    Nyland, K. et al. Star formation in nearby early-type galaxies: the radio continuum perspective. Mon. Not. R. Astron. Soc. 464, 1029–1064 (2017).

    ADS  Article  Google Scholar 

  58. 58.

    Ibar, E. Deep multi-frequency radio imaging in the Lockman Hole using the GMRT and VLA—I. The nature of the sub-mJy radio population. Mon. Not. R. Astron. Soc. 397, 281–298 (2009).

    ADS  Article  Google Scholar 

  59. 59.

    Thomson, A. P. et al. An ALMA survey of submillimetre galaxies in the Extended Chandra Deep Field South: radio properties and the far-infrared/radio correlation. Mon. Not. R. Astron. Soc. 442, 577–588 (2014).

    ADS  Article  Google Scholar 

  60. 60.

    Mannucci, F., Cresci, G., Maiolino, R., Marconi, A. & Gnerucci, A. A fundamental relation between mass, star formation rate and metallicity in local and high-redshift galaxies. Mon. Not. R. Astron. Soc. 408, 2115–2127 (2010).

    ADS  Article  Google Scholar 

  61. 61.

    Kashino, D. et al. The FMOS-COSMOS survey of star-forming galaxies at z ~ 1.6. IV. excitation state and chemical enrichment of the interstellar medium. Astrophys. J. 835, 27 (2017).

    Article  Google Scholar 

  62. 62.

    Halliday, C. et al. GMASS ultradeep spectroscopy of galaxies at z ~ 2. I. The stellar metallicity. Astron. Astrophys. 479, 417–425 (2008).

    ADS  Article  Google Scholar 

  63. 63.

    Arimoto, N., Matsushita, K., Ishimaru, Y., Ohashi, T. & Renzini, A. The iron discrepancy in elliptical galaxies after ASCA. Astrophys. J. 477, 128–143 (1997).

    ADS  Article  Google Scholar 

  64. 64.

    Agius, N. K. et al. GAMA/H-ATLAS: linking the properties of submm detected and undetected early-type galaxies—I. z ≤ 0.06 sample. Mon. Not. R. Astron. Soc. 431, 1929–1946 (2013).

    ADS  Article  Google Scholar 

  65. 65.

    Leeuw, L. L., Davidson, J., Dowell, C. D. & Matthews, H. E. Spatially resolved imaging at 350 μm of cold dust in nearby elliptical galaxies. Astrophys. J. Lett. 677, 249–261 (2008).

    ADS  Article  Google Scholar 

  66. 66.

    Crocker, A. F., Bureau, M., Young, L. M. & Combes, F. Molecular gas and star formation in early-type galaxies. Mon. Not. R. Astron. Soc. 410, 1197–1222 (2011).

    ADS  Article  Google Scholar 

  67. 67.

    Davis, T. A. et al. Molecular and atomic gas in dust lane early-type galaxies—I. Low star formation efficiencies in minor merger remnants. Mon. Not. R. Astron. Soc. 449, 3503–3516 (2015).

    ADS  Article  Google Scholar 

  68. 68.

    Lagos, C. D. P. et al. Cosmic evolution of the atomic and molecular gas contents of galaxies. Mon. Not. R. Astron. Soc. 418, 1649–1667 (2011).

    ADS  Article  Google Scholar 

  69. 69.

    Lagos, C. D. P. et al. Which galaxies dominate the neutral gas content of the Universe? Mon. Not. R. Astron. Soc. 440, 920–941 (2014).

    ADS  Article  Google Scholar 

  70. 70.

    Sternberg, A., Le Petit, F., Roueff, E. & Le Bourlot, J. H i-to-H2 transitions and H i column densities in galaxy star-forming regions. Astrophys. J. 790, 30 (2014).

    ADS  Article  Google Scholar 

  71. 71.

    Welch, G. A., Sage, L. J. & Young, L. M. The cool interstellar medium in elliptical galaxies. II. Gas content in the volume-limited sample and results from the combined elliptical and lenticular surveys. Astrophys. J. 725, 100–114 (2010).

    ADS  Article  Google Scholar 

  72. 72.

    Sage, L. J., Welch, G. A. & Young, L. M. The cool ISM in elliptical galaxies. I. A survey of molecular gas. Astrophys. J. 657, 232–240 (2007).

    ADS  Article  Google Scholar 

  73. 73.

    Chevance, M. et al. On the shapes and structures of high-redshift compact galaxies. Astrophys. J. Lett. 754, 5 (2012).

    ADS  Article  Google Scholar 

  74. 74.

    Krogager, J.-K., Zirm, A. W., Toft, S., Man, A. & Brammer, G. A spectroscopic sample of massive, quiescent z ~ 2 galaxies: implications for the evolution of the mass–size relation. Astrophys. J. 797, 14 (2014).

    ADS  Article  Google Scholar 

  75. 75.

    Bruce, V. A. et al. The bulge-disc decomposed evolution of massive galaxies at 1 < z < 3 in CANDELS. Mon. Not. R. Astron. Soc. 444, 1001–1033 (2014).

    ADS  Article  Google Scholar 

  76. 76.

    Davis, T. A. et al. The ATLAS3D project—X. On the origin of the molecular and ionized gas in early-type galaxies. Mon. Not. R. Astron. Soc. 417, 882–899 (2011).

    ADS  Article  Google Scholar 

  77. 77.

    Katkov, I. Y., Sil’chenko, O. K. & Afanasiev, V. L. Decoupled gas kinematics in isolated S0 galaxies. Mon. Not. R. Astron. Soc. 438, 2798–2803 (2014).

    ADS  Article  Google Scholar 

  78. 78.

    Koekemoer, A. M. et al. The COSMOS survey: Hubble Space Telescope Advanced Camera for Surveys observations and data processing. Astrophys. J. Suppl. S. 172, 196–202 (2007).

    ADS  Article  Google Scholar 

  79. 79.

    Guo, Y. et al. Color and stellar population gradients of passively evolving galaxies at z ~ 2 from HST/WFC3 deep imaging in the Hubble ultra deep field. Astrophys. J. 735, 17 (2011).

    ADS  Article  Google Scholar 

  80. 80.

    Gargiulo, A., Saracco, P., Longhetti, M., La Barbera, F. & Tamburri, S. Spatially resolved colours and stellar population properties in early-type galaxies at z ~ 1.5. Mon. Not. R. Astron. Soc. 425, 2698–2714 (2012).

    ADS  Article  Google Scholar 

  81. 81.

    Chan, J. C. C. et al. Sizes, colours gradients and resolved stellar mass distributions for the massive cluster galaxies in XMMUJ2235-2557 at z = 1.39. Mon. Not. R. Astron. Soc. 458, 3181–3209 (2016).

    ADS  Article  Google Scholar 

  82. 82.

    Koekemoer, A. M. et al. CANDELS: the Cosmic Assembly Near-Infrared Deep Extragalactic Legacy Survey—the Hubble Space Telescope observations, imaging data products, and mosaics. Astrophys. J. Suppl. S. 197, 36 (2011).

    ADS  Article  Google Scholar 

  83. 83.

    Peng, C. Y., Ho, L. C., Impey, C. D. & Rix, H.-W. Detailed decomposition of galaxy images. II. Beyond axisymmetric models. Astron. J. 139, 2097–2129 (2010).

    ADS  Article  Google Scholar 

  84. 84.

    Mancini, C. et al. High-redshift elliptical galaxies: are they (all) really compact? Mon. Not. R. Astron. Soc. 401, 933–940 (2010).

    ADS  Article  Google Scholar 

  85. 85.

    van der Wel, A. et al. 3d-HST + CANDELS: The evolution of the galaxy size–mass distribution since z = 3. Astrophys. J. 788, 19 (2014).

    Article  Google Scholar 

  86. 86.

    Teyssier, R. Cosmological hydrodynamics with adaptive mesh refinement. A new high resolution code called RAMSES. Astron. Astrophys. 385, 337–364 (2002).

    ADS  Article  Google Scholar 

  87. 87.

    Martig, M. et al. The ATLAS3D project—XXII. Low-efficiency star formation in early-type galaxies: hydrodynamic models and observations. Mon. Not. R. Astron. Soc. 432, 1914–1927 (2013).

    ADS  Article  Google Scholar 

  88. 88.

    Maraston, C. Evolutionary population synthesis: models, analysis of the ingredients and application to high-z galaxies. Mon. Not. R. Astron. Soc. 362, 799–825 (2005).

    ADS  Article  Google Scholar 

  89. 89.

    Onodera, M. et al. The ages, metallicities, and element abundance ratios of massive quenched galaxies at z ≥ 1.6. Astrophys. J. 808, 12 (2015).

    Article  Google Scholar 

  90. 90.

    Ventura, P. et al. Dust from asymptotic giant branch stars: relevant factors and modelling uncertainties. Mon. Not. R. Astron. Soc. 439, 977–989 (2014).

    ADS  Article  Google Scholar 

  91. 91.

    Noll, S. et al. GMASS ultradeep spectroscopy of galaxies at z ~ 2 IV. The variety of dust populations. Astron. Astrophys. 499, 69–85 (2009).

    ADS  Article  Google Scholar 

  92. 92.

    Kriek, M. & Conroy, C. The dust attenuation law in distant galaxies: evidence for variation with spectral type. Astrophys. J. Lett. 775, 6 (2013).

    ADS  Article  Google Scholar 

  93. 93.

    Ciotti, L., D’Ercole, A., Pellegrini, S. & Renzini, A. Winds, outflows, and inflows in X-ray elliptical galaxies. Astrophys. J. 376, 380–403 (1991).

    ADS  Article  Google Scholar 

  94. 94.

    Finoguenov, A. et al. The XMM-Newton wide-field survey in the COSMOS field: statistical properties of clusters of galaxies. Astrophys. J. Suppl. S. 172, 128–195 (2007).

    ADS  Article  Google Scholar 

  95. 95.

    Elvis, M. et al. The Chandra COSMOS survey. I. Overview and point source catalog. Astrophys. J. Suppl. S. 184, 158–171 (2009).

    ADS  Article  Google Scholar 

  96. 96.

    Béthermin, M. et al. Clustering, host halos, and environment of z ~ 2 galaxies as a function of their physical properties. Astron. Astrophys. 567, 17 (2014).

    Article  Google Scholar 

  97. 97.

    Leroy, A. K. The star formation efficiency in nearby galaxies: measuring where gas forms stars effectively. Astron. J. 136, 2782–2845 (2008).

    ADS  Article  Google Scholar 

  98. 98.

    Saintonge, A. et al. COLD GASS, an IRAM legacy survey of molecular gas in massive galaxies—I. Relations between H2, H i, stellar content and structural properties. Mon. Not. R. Astron. Soc. 415, 32–60 (2011).

    ADS  Article  Google Scholar 

  99. 99.

    Bauermeister, A. et al. The EGNoG survey: molecular gas in intermediate-redshift star-forming galaxies. Astrophys. J. 768, 27 (2013).

    Article  Google Scholar 

  100. 100.

    Geach, J. E. et al. On the evolution of the molecular gas fraction of star-forming galaxies. Astrophys. J. Lett. 730, 5 (2011).

    Article  Google Scholar 

  101. 101.

    Daddi, E. et al. Different star formation laws for disks versus starbursts at low and high redshifts. Astrophys. J. Lett. 714, L118–L122 (2010).

    ADS  Article  Google Scholar 

  102. 102.

    Tacconi, L. J. et al. PHIBSS: molecular gas content and scaling relations in z ~ 1–3 massive, main-sequence star-forming galaxies. Astrophys. J. 768, 22 (2013).

    Article  Google Scholar 

  103. 103.

    Boselli, A. et al. Cold gas properties of the Herschel reference survey. II. Molecular and total gas scaling relations. Astron. Astrophys. 564, 18 (2014).

    Article  Google Scholar 

  104. 104.

    Sargent, M. T. et al. Regularity underlying complexity: a redshift-independent description of the continuous variation of galaxy-scale molecular gas properties in the mass-star formation rate plane. Astrophys. J. 793, 34 (2014).

    Article  Google Scholar 

  105. 105.

    Davis, T. A. et al. The ATLAS3D project—XXVIII. Dynamically driven star formation suppression in early-type galaxies. Mon. Not. R. Astron. Soc. 444, 3427–3445 (2014).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

The authors thank S. Lianou for providing models of dust emission in local ETGs and V. Smolčić for the 3 GHz radio data. S.J. acknowledges China Scholarship Council funding. The new simulations presented in this work were performed on GENCI resources (allocations 2016-04-2019 and 2017-04-2192).

Author information

Affiliations

Authors

Contributions

R.G. and E.D. devised the project. R.G. analysed the data and wrote the manuscript. G.M. modelled the FIR emission. F.B. and M.M. carried out and analysed the simulations. M.S. and M.B. provided some of the theoretical framework. S.J. provided the MIR catalogue. A.F. analysed the X-ray observations. G.W.W., I.A. and M.Y. provided submillimetre data. H.S.H., A.R., V.S. and F.V. provided critical feedback that helped shape the manuscript.

Corresponding author

Correspondence to R. Gobat.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–7, Supplementary Tables 1–2.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gobat, R., Daddi, E., Magdis, G. et al. The unexpectedly large dust and gas content of quiescent galaxies at z > 1.4. Nat Astron 2, 239–246 (2018). https://doi.org/10.1038/s41550-017-0352-5

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing