Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Comment
  • Published:

Few and far between

Pulsars — fast-spinning neutron stars — are precision clocks provided by nature. Finding pulsars in the Galactic Centre orbiting Sagittarius A*, the closest supermassive black hole to the Earth, will offer unprecedented opportunities to test general relativity and its alternatives.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Tracking a pulsar as it orbits the central supermassive black hole.

References

  1. Boehle, A. et al. Astrophys. J. 830, 17 (2016).

    Article  ADS  Google Scholar 

  2. Gillessen, S. et al. Astrophys. J. 837, 30 (2017).

    Article  ADS  Google Scholar 

  3. Joshi, P. S. in Springer Handbook of Spacetime (eds Ashtekar, A. & Petkov, V.) 409–436 (Springer, Heidelberg, 2014).

  4. Penrose, R. in General Relativity: An Einstein Centenary Survey (ed. Hawking, S. W.) 581–638 (Cambridge Univ. Press, Cambridge, 1979).

  5. Abbott, B. P. et al. Phys. Rev. Lett. 116, 061102 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  6. Thrane, E., Lasky, P. &  Levin, Y. Preprint at https://arxiv.org/abs/1706.05152 (2017).

  7. Desvignes, G. et al. Mon. Not. R. Astron. Soc 448, 3341–3380 (2016).

    Article  ADS  Google Scholar 

  8. Liu, K. et al. Astrophys. J. 747, 1 (2012).

    Article  ADS  Google Scholar 

  9. Thorne, K. S. Rev. Mod. Phys. 52, 299–340 (1980).

    Article  ADS  Google Scholar 

  10. Doeleman, S. S. et al. Nature 455, 78–80 (2008).

    Article  ADS  Google Scholar 

  11. Falcke, H. & Markoff, S. B. Class. Quantum Grav. 30, 244003 (2013).

  12. Psaltis, D. et al. Astrophys. J. 818, 121 (2016).

  13. Eatough, R. P. et al. Nature 501, 391–394 (2013).

    Article  ADS  Google Scholar 

  14. Goddi, C. et al. Int. J. Mod. Phys. D 26, 1730001 (2017).

    Article  ADS  Google Scholar 

  15. Muno, M. P. et al. Astrophys. J. 622, L113–L116 (2005).

    Article  ADS  Google Scholar 

  16. Wharton, R. S. et al. Astrophys. J. 753, 108 (2012).

    Article  ADS  Google Scholar 

  17. Eatough, R. P. et al. Proc. Adv. Astrophys. SKA (AASKA14) 045 (2015); https://pos.sissa.it/215/045/pdf

  18. Cordes, J. M. & Lazio, T. J. W. Astrophys. J. 475, 557–564 (1997).

  19. Spitler, L. G. et al. Astrophys. J. 780, L3 (2014).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

K.L. and R.E. acknowledge financial support by the European Research Council for the ERC Synergy Grant BlackHoleCam under contract no. 610058. Fig. 1 is based on a sketch by R.E. The telescope outline is based on a photograph by E. Middelberg.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kuo Liu or Ralph Eatough.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, K., Eatough, R. Few and far between. Nat Astron 1, 812–813 (2017). https://doi.org/10.1038/s41550-017-0327-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-017-0327-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing