Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Constraints on the spin evolution of young planetary-mass companions

Subjects

Abstract

Surveys of young star-forming regions have discovered a growing population of planetary-mass (<13 M Jup) companions around young stars1. There is an ongoing debate as to whether these companions formed like planets (that is, from the circumstellar disk)2, or if they represent the low-mass tail of the star-formation process3. In this study, we utilize high-resolution spectroscopy to measure rotation rates of three young (2–300 Myr) planetary-mass companions and combine these measurements with published rotation rates for two additional companions4,5 to provide a picture of the spin distribution of these objects. We compare this distribution to complementary rotation-rate measurements for six brown dwarfs with masses <20 M Jup, and show that these distributions are indistinguishable. This suggests that either these two populations formed via the same mechanism, or that processes regulating rotation rates are independent of formation mechanism. We find that rotation rates for both populations are well below their break-up velocities and do not evolve significantly during the first few hundred million years after the end of accretion. This suggests that rotation rates are set during the late stages of accretion, possibly by interactions with a circumplanetary disk. This result has important implications for our understanding of the processes regulating the angular momentum evolution of young planetary-mass objects, and of the physics of gas accretion and disk coupling in the planetary-mass regime.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Rotational broadening in the ROXs 42B b spectrum.
Fig. 2: Distributions of observed rotation rates as a fraction of the corresponding break-up velocity for each object.
Fig. 3: Angular momentum evolution of planetary-mass objects.

Similar content being viewed by others

References

  1. Bowler, B. Imaging extrasolar giant planets. Publ. Astron. Soc. Pac. 128, 102001 (2016).

    Article  ADS  Google Scholar 

  2. Helled, R. et al. in Protostars and Planets VI 643–665 (Univ. Arizona Press, 914, 2014).

  3. Chabrier, G., Johansen, A., Janson, M. & Rafikov, R. in Protostars & Planets VI 619–642 (Univ. Arizona Press, Tucson, 2014).

  4. Snellen, I. A. et al. Fast spin of the young extrasolar planet β Pictoris b. Nature 509, 63–65 (2014).

    Article  ADS  Google Scholar 

  5. Zhou, Y., Apai, D., Schneider, G. H., Marley, M. S. & Showman, A. P. Discovery of rotational modulations in the planetary-mass companion 2M1207b: intermediate rotation period and heterogeneous clouds in a low gravity atmosphere. Astrophys. J. 818, 176 (2016).

    Article  ADS  Google Scholar 

  6. Brandt, T. D. et al. A statistical analysis of SEEDS and other high-contrast exoplanet surveys: massive planets or low-mass brown dwarfs? Astrophys. J. 794, 159 (2014).

    Article  ADS  Google Scholar 

  7. Takata, T. & Stevenson, D. Despin mechanism for protogiant planets and ionization state of protogiant planetary disks. Icarus 123, 404–421 (1996).

    Article  ADS  Google Scholar 

  8. Morbidelli, A., Tsiganis, K., Batygin, K., Crida, A. & Gomes, R. Explaining why the uranian satellites have equatorial prograde orbits despite the large planetary obliquity. Icarus 219, 737–740 (2012).

    Article  ADS  Google Scholar 

  9. Correia, A. C. M. & Laskar, J. The four final rotation states of Venus. Nature 411, 767–770 (2001).

    Article  ADS  Google Scholar 

  10. Herbst, W., Bailer-Jones, C. A. L., Mundt, R., Meisenheimer, K. & Wackermann, R. Stellar rotation and variability in the Orion Nebula Cluster. Astron. Astrophys. 396, 513–532 (2002).

    Article  ADS  Google Scholar 

  11. Gallet, F. & Bouvier, J. Improved angular momentum evolution model for solar-like stars. Astron. Astrophys. 556, A36 (2013).

    Article  ADS  Google Scholar 

  12. Zapatero Osorio, M. R. et al. Spectroscopic rotational velocities of brown dwarfs. Astrophys. J. 647, 1405–1412 (2006).

    Article  ADS  Google Scholar 

  13. Scholz, A., Kostov, V., Jayawardhana, R. & Muzic, K. Rotation periods of young brown dwarfs: K2 survey in Upper Scorpius. Astrophys. Lett. 809, L29 (2015).

    Article  ADS  Google Scholar 

  14. Mohanty, S., Jayawardhana, R. & Basri, G. The T Tauri phase down to nearly planetary masses: Echelle spectra of 82 very low mass stars and brown dwarfs. Astrophys. J. 626, 498–522 (2005).

    Article  ADS  Google Scholar 

  15. Rice, E. L., Barman, T., McLean, I. S., Prato, L. & Kirkpatrick, J. D. Physical properties of young brown dwarfs and very low mass stars inferred from high-resolution model spectra. Astrophys. J. Suppl. Ser. 186, 63–84 (2010).

    Article  ADS  Google Scholar 

  16. Kurosawa, R., Harries, T. J. & Littlefair, S. P. Radial and rotational velocities of young brown dwarfs and very low-mass stars in the Upper Scorpius OB association and the ρ Ophiuchi cloud core. Mon. Not. R. Astron. Soc. 372, 1879–1887 (2006).

    Article  ADS  Google Scholar 

  17. Kraus, A. L. et al. Three wide planetary-mass companions to FW Tau, ROXs 12, and ROXs 42B. Astrophys. J. 781, 20 (2014).

    Article  ADS  Google Scholar 

  18. Ireland, M. J., Kraus, A. L., Martinache, F., Law, N. & Hillenbrand, L. A. Two wide planetary-mass companions to solar-type stars in Upper Scorpius. Astrophys. J. 726, 113 (2011).

    Article  ADS  Google Scholar 

  19. Gauza, B. et al. Discovery of a young planetary mass companion to the nearby M dwarf VHS J125601.92-125723.9. Astrophys. J. 804, 96 (2015).

    Article  ADS  Google Scholar 

  20. Alves de Oliveira, C., Moraux, E., Bouvier, J. & Bouy, H. Spectroscopy of new brown dwarf members of ρ Ophiuchi and an updated initial mass function. Astron. Astrophys. 539, A151 (2012).

    Article  ADS  Google Scholar 

  21. Lodieu, N., Hambly, N. C., Jameson, R. F. & Hodgkin, S. T. Near-infrared cross-dispersed spectroscopy of brown dwarf candidates in the Upper Sco association. Mon. Not. R. Astron. Soc. 383, 1385–1396 (2008).

    Article  ADS  Google Scholar 

  22. Liu, M. C. et al. The extremely red, young L dwarf PSO J318.5338-22.8603: a free-floating planetary-mass analog to directly imaged young gas-giant planets. Astrophys. Lett. 777, L20 (2013).

    Article  ADS  Google Scholar 

  23. Quanz, S. P. et al. Search for very low-mass brown dwarfs and free-floating planetary-mass objects in Taurus. Astrophys. J. 708, 770–784 (2010).

    Article  ADS  Google Scholar 

  24. Liu, M. C., Dupuy, T. J. & Allers, K. N. The Hawaii infrared parallax program. II. Young ultracool field dwarfs. Astrophys. J. 833, 96 (2016).

    Article  ADS  Google Scholar 

  25. Crossfield, I. J. M. Doppler imaging of exoplanets and brown dwarfs. Astron. Astrophys. 566, A130 (2014).

    Article  ADS  Google Scholar 

  26. Schwarz, H. et al. The slow spin of the young substellar companion GQ Lupi b and its orbital configuration. Astron. Astrophys. 593, A74 (2016).

    Article  Google Scholar 

  27. Metchev, S. A. et al. Weather on other worlds. II. Survey results: spots are ubiquitous on L and T dwarfs. Astrophys. J. 799, 154 (2015).

    Article  ADS  Google Scholar 

  28. Szulagyi, J., Mayer, L. & Quinn, T. Cirumplanetary discs around young giant planets: a comparison between core-accretion and disc instability. Mon. Not. R. Astron. Soc. 464, 3158–3168 (2017).

    Article  ADS  Google Scholar 

  29. Scholz, A. & Eisloffel, J. Rotation and variability of very low mass stars and brown dwarfs near ε Ori. Astron. Astrophys. 429, 1007–1023 (2005).

    Article  ADS  Google Scholar 

  30. Hughes, D. W. Planetary spin. Planet. Space Sci. 51, 517–523 (2003).

    Article  ADS  Google Scholar 

  31. Boogert, A. C. A., Blake, G. A. & Tielens, A. G. G. M. High-resolution 4.7 micron Keck/NIRSPEC spectra of protostars. II. Detection of the 13CO isotope in icy grain mantles. Astrophys. J. 577, 271–280 (2002).

    Article  ADS  Google Scholar 

  32. Valenti, J. A., Butler, R. P. & Marcy, G. W. Determining spectrometer instrumental profiles using FTS reference spectra. Publ. Astron. Soc. Pac. 107, 716 (1995).

    Article  Google Scholar 

  33. Benneke, B. & Seager, S. Atmospheric retrieval for super-Earths: uniquely constraining the atmospheric composition with transmission spectroscopy. Astrophys. J. 753, 100 (2012).

    Article  ADS  Google Scholar 

  34. Gray, D. F. The Observation and Analysis of Stellar Photospheres 3rd edn, 464–465 (Cambridge Univ. Press, 2008).

  35. Husser, T.-O. S. et al. A new extensive library of PHOENIX stellar atmospheres and synthetic spectra. Astron. Astrophys. 553, A6 (2013).

    Article  Google Scholar 

  36. Tennyson, J. & Yurchenko, S. N. ExoMol: molecular line lists for exoplanet and other atmospheres. Mon. Not. R. Astron. Soc. 425, 21–33 (2012).

    Article  ADS  Google Scholar 

  37. Rothman, L. S. et al. HITEMP, the high-temperature molecular spectroscopic database. J. Quant. Spectrosc. 111, 15 (2010).

    ADS  Google Scholar 

  38. Allers, K., Gallimore, J. F., Liu, M. C. & Dupuy, T. J. The radial and rotational velocities of PSO J318.5338-22.8603, a newly confirmed planetary-mass member of the β Pictoris moving group. Astrophys. J. 819, 133 (2016).

    Article  ADS  Google Scholar 

  39. Filippazzo, J. C. Fundamental parameters and spectral energy distributions of young and field age objects with masses spanning the stellar to planetary regime. Astrophys. J. 810, 158 (2015).

    Article  ADS  Google Scholar 

  40. Burrows, A. et al. A nongray theory of extrasolar giant planets and brown dwarfs. Astrophys. J. 491, 856–875 (1997).

    Article  ADS  Google Scholar 

  41. Baraffe, I. et al. Evolutionary models for cool brown dwarfs and extrasolar giant planets. The case of HD 209458. Astron. Astrophys. 402, 701–712 (2003).

    Article  ADS  Google Scholar 

  42. Canup, R. M. & Ward, W. R. A common mass scaling for satellite systems of gaseous planets. Nature 441, 834–839 (2006).

    Article  ADS  Google Scholar 

  43. Mohanty, S. & Shu, F. H. Magnetocentrifugally driven flows from young stars and disks. VI. Accretion with a multipole stellar field. Astrophys. J. 687, 1323–1338 (2008).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation. We acknowledge the efforts of the Keck Observatory staff. The authors wish to recognize and acknowledge the very significant cultural role and reverence that the summit of Mauna Kea has always had within the indigenous Hawaiian community. We are most fortunate to have the opportunity to conduct observations from this mountain. H.A.K. acknowledges support from the Sloan Fellowship Program. Support for this work was provided by NASA through Hubble Fellowship grant HST-HF2-51369.001-A awarded by the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., for NASA, under contract NAS5-26555.

Author information

Authors and Affiliations

Authors

Contributions

M.L.B. led the observational programme, analysed the resulting data and wrote the paper. B.B. helped to design and execute the observations and provided advice on the analysis as well as on atmosphere models for each object. H.A.K. provided advice and guidance throughout the process. K.B. calculated the approximate angular momentum evolution of a newly formed 10 M Jup object surrounded by a circumplanetary disk. B.P.B. helped to identify and characterize suitable targets, including calculating new mass estimates for all of the brown dwarfs included in this study.

Corresponding author

Correspondence to Marta L. Bryan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–7 and Supplementary Tables 1–3.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bryan, M.L., Benneke, B., Knutson, H.A. et al. Constraints on the spin evolution of young planetary-mass companions. Nat Astron 2, 138–144 (2018). https://doi.org/10.1038/s41550-017-0325-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-017-0325-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing