Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

The past, present and future of pulsars

Abstract

On the 50th anniversary of the accidental discovery of pulsars (pulsating radio stars, also known as neutron stars) I reflect on the process of their detection and how our understanding of these stars gradually grew. Fifty years on, we have a much better (but still incomplete) understanding of these extreme objects, which I summarize here. The study of pulsars is advancing several areas of fundamental physics, including general relativity, particle physics, condensed-matter physics, and radiation processes in extreme electric and magnetic fields. New observational facilities coming online in the radio regime (such as the Five hundred meter Aperture Spherical Telescope and the Square Kilometre Array precursors) will revolutionize the search for pulsars by accessing thousands more, thus ushering in a new era of discovery for the field.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1

Graham Woan.

Fig. 2
Fig. 3

SKA South Africa.

Fig. 4

Dr Natasha Hurley-Walker, Curtin Institute of Radio Astronomy International Centre for Radio Astronomy Research.

Fig. 5

NAOC.

Similar content being viewed by others

References

  1. Hewish, A., Bell, S. J., Pilkington, J. D. H., Scott, P. F. & Collins, R. A. Observation of a rapidly pulsating radio source. Nature 217, 709–713 (1968).

    Article  ADS  Google Scholar 

  2. Gold, T. Rotating neutron stars and the nature of pulsars. Nature 221, 25–27 (1969).

    Article  ADS  Google Scholar 

  3. Caraveo, P. Gamma-ray pulsar revolution. Annu. Rev. Astron. Astr. 52, 211–250 (2014).

    Article  ADS  Google Scholar 

  4. Kramer, M. & Stairs, I. H. The double pulsar. Annu. Rev. Astron. Astr. 46, 541–572 (2008).

    Article  ADS  Google Scholar 

  5. Wolszczan, A. & Frail, D. A planetary system around the millisecond pulsar PSR1257+12. Nature 336, 145–147 (1992).

    Article  ADS  Google Scholar 

  6. Ransom, S. M. et al. A millisecond pulsar in a stellar triple system. Nature 505, 520–524 (2014).

    Article  ADS  Google Scholar 

  7. Kaspi, V. M. & Beloborodov, A. M. Magnetars. Annu. Rev. Astron. Astr. 55, 261–301 (2017).

    Article  ADS  Google Scholar 

  8. McLaughlin, M. A. et al. Transient radio bursts from rotating neutron stars. Nature 439, 817–820 (2006).

    Article  ADS  Google Scholar 

  9. Wijnands, R. & van der Klis, M. A millisecond pulsar in an X-ray binary system. Nature 394, 344–346 (1998).

    Article  ADS  Google Scholar 

  10. Muslimov, A. G. & Harding, A. K. The effects of rotation and relativistic charge flow on pulsar magnetospheric structure. Astrophys. J. 630, 454–464 (2005).

    Article  ADS  Google Scholar 

  11. Demorest, P. B. et al. A two-solar-mass neutron star measured using Shapiro delay. Nature 467, 1081–1083 (2010).

    Article  ADS  Google Scholar 

  12. Espinoza, C. M. et al. A study of 315 glitches in the rotation of 102 pulsars. Mon. Not. R.Astron. Soc. 414, 1679–1704 (2011).

    Article  ADS  Google Scholar 

  13. Geyer, M. et al. Scattering analysis of LOFAR pulsar observations. Mon. Not. R. Astron. Soc. 470, 2659–2679 (2017).

    Article  ADS  Google Scholar 

  14. Hulse, R. A. The discovery of the binary pulsar. Rev. Mod. Phys. 66, 699–710 (1994).

    Article  ADS  Google Scholar 

  15. Taylor, J. H. Binary pulsars and relativistic gravity. Rev. Mod. Phys. 66, 711–719 (1994).

    Article  ADS  Google Scholar 

  16. Kramer, M. Pulsars as probes of gravity and fundamental physics. Int. J. Mod. Phys. D 25, 1630029–1630048 (2016).

    Article  ADS  Google Scholar 

  17. Verbiest, J. P. W. et al. The International Pulsar Timing Array: first data release. Mon. Not. R. Astron. Soc. 458, 1267–1288 (2016).

    Article  ADS  Google Scholar 

  18. Arzoumanian, Z. et al. The NANOGrav nine-year data set: limits on the isotropic stochastic gravitational wave background. Astrophys. J. 821, 13–36 (2016).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jocelyn Bell Burnell.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bell Burnell, J. The past, present and future of pulsars. Nat Astron 1, 831–834 (2017). https://doi.org/10.1038/s41550-017-0323-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-017-0323-x

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing