Letter | Published:

Three-dimensional motions in the Sculptor dwarf galaxy as a glimpse of a new era

Nature Astronomyvolume 2pages156161 (2018) | Download Citation

Abstract

The three-dimensional motions of stars in small galaxies beyond our own are minute, yet they are crucial for understanding the nature of gravity and dark matter1,2. Even for the dwarf galaxy Sculptor—one of the best-studied systems, which is inferred to be strongly dark matter dominated3,4—there are conflicting reports5,6,7 on its mean motion around the Milky Way, and the three-dimensional internal motions of its stars have never been measured. Here, we present precise proper motions of Sculptor’s stars based on data from the Gaia mission8 and Hubble Space Telescope. Our measurements show that Sculptor moves around the Milky Way on a high-inclination elongated orbit that takes it much further out than previously thought. For Sculptor’s internal velocity dispersions, we find σ R = 11.5 ± 4.3 km s−1 and σ T = 8.5 ± 3.2 km s−1 along the projected radial and tangential directions. Thus, the stars in our sample move preferentially on radial orbits as quantified by the anisotropy parameter, which we find to be \({\boldsymbol{\beta }} \sim 0.8{6}_{-0.83}^{+0.12}\) at a location beyond the core radius. Taken at face value, this high radial anisotropy requires abandoning conventional models9 for Sculptor’s mass distribution. Our sample is dominated by metal-rich stars and for these we find \({{\boldsymbol{\beta }}}^{{\rm{M}}R} \sim 0.9{5}_{-0.27}^{+0.04}\)—a value consistent with multi-component spherical models where Sculptor is embedded in a cuspy dark halo10, as might be expected for cold dark matter.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Lin, D. N. C. & Faber, S. M. Some implications of nonluminous matter in dwarf spheroidal galaxies. Astrophys. J. Lett. 266, 21–25 (1983).

  2. 2.

    Strigari, L. E. Galactic searches for dark matter. Phys. Rep. 531, 1–88 (2013).

  3. 3.

    Walker, M. G. et al. Velocity dispersion profiles of seven dwarf spheroidal galaxies. Astrophys. J. Lett. 667, 53–56 (2007).

  4. 4.

    Battaglia, G. et al. The kinematic status and mass content of the Sculptor dwarf spheroidal galaxy. Astrophys. J. Lett. 681, L13 (2008).

  5. 5.

    Schweitzer, A. E., Cudworth, K. M., Majewski, S. R. & Suntzeff, N. B. The absolute proper motion and a membership survey of the Sculptor dwarf spheroidal galaxy. Astron. J. 110, 2747–2757 (1995).

  6. 6.

    Piatek, S. et al. Proper motions of dwarf spheroidal galaxies from Hubble Space Telescope imaging. IV. Measurement for Sculptor. Astron. J. 131, 1445–1460 (2006).

  7. 7.

    Walker, M. G., Mateo, M. & Olszewski, E. W. Systemic proper motions of Milky Way satellites from stellar redshifts: the Carina, Fornax, Sculptor, and Sextans dwarf spheroidals. Astrophys. J. Lett. 688, L75 (2008).

  8. 8.

    Prusti, T. et al. The Gaia mission. Astron. Astrophys. 595, A1 (2016).

  9. 9.

    Battaglia, G., Helmi, A. & Breddels, M. Internal kinematics and dynamical models of dwarf spheroidal galaxies around the Milky Way. New Astron. Rev. 57, 52–79 (2013).

  10. 10.

    Strigari, L. E., Frenk, C. S. & White, S. D. M. Dynamical models for the Sculptor dwarf spheroidal in a CDM universe. Astrophys. J. 838, 123–132 (2017).

  11. 11.

    Anderson, J. Variation of the Distortion Solution of the WFC (Space Telescope Science Institute, 2007).

  12. 12.

    Brown, A. G. A. et al. Gaia Data Release 1. Summary of the astrometric, photometric, and survey properties. Astron. Astrophys. 595, A2 (2016).

  13. 13.

    Massari, D., Posti, L., Helmi, A., Fiorentino, G. & Tolstoy, E. The power of teaming up HST and Gaia: the first proper motion measurement of the distant cluster NGC 2419. Astron. Astrophys. 598, L9 (2017).

  14. 14.

    Dinescu, D. I., Girard, T. M. & van Altena, W. F. Space velocities of globular clusters. III. Cluster orbits and halo substructure. Astron. J. 117, 1792–1815 (1999).

  15. 15.

    Sohn, S. T., Anderson, J. & van der Marel, R. P. The M31 velocity vector. I. Hubble Space Telescope proper-motion measurements. Astrophys. J. 753, 7 (2012).

  16. 16.

    Lindegren, L. et al. Gaia Data Release 1. Astrometry: one billion positions, two million proper motions and parallaxes. Astron. Astrophys. 595, A4 (2016).

  17. 17.

    Martnez-Vázquez, C. E. et al. Variable stars in local group galaxies. I. Tracing the early chemical enrichment and radial gradients in the Sculptor dSph with RR Lyrae stars. Mon. Not. R. Astron. Soc. 454, 1509–1516 (2015).

  18. 18.

    Piffl, T. et al. Constraining the Galaxy’s dark halo with RAVE stars. Mon. Not. R. Astron. Soc. 445, 3133–3151 (2014).

  19. 19.

    Mayer, L. et al. The metamorphosis of tidally stirred dwarf galaxies. Astrophys. J. 559, 754–784 (2001).

  20. 20.

    Michalik, D., Lindegren, L., Hobbs, D. & Butkevich, A. G. Gaia astrometry for stars with too few observations. A Bayesian approach. Astron. Astrophys. 583, A68 (2015).

  21. 21.

    Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: the MCMC hammer. Public. Astron. Soc. Pac. 125, 306–312 (2013).

  22. 22.

    Strigari, L. E., Bullock, J. S. & Kaplinghat, M. Determining the nature of dark matter with astrometry. Astrophys. J. Lett. 657, 1–4 (2007).

  23. 23.

    Walker, M. G., Mateo, M. & Olszewski, E. W. Stellar velocities in the Carina, Fornax, Sculptor, and Sextans dSph galaxies: data from the Magellan/MMFS Survey. Astron. J. 137, 3100–3108 (2009).

  24. 24.

    Walker, M. G. & Peñarrubia, J. A method for measuring (slopes of) the mass profiles of dwarf spheroidal galaxies. Astrophys. J. 742, 20 (2011).

  25. 25.

    Amorisco, N. C. & Evans, N. W. Dark matter cores and cusps: the case of multiple stellar populations in dwarf spheroidals. Mon. Not. R. Astron. Soc. 419, 184–196 (2012).

  26. 26.

    Breddels, M. A. & Helmi, A. Model comparison of the dark matter profiles of Fornax, Sculptor, Carina and Sextans. Astron. Astrophys. 558, A35 (2013).

  27. 27.

    Navarro, J. F., Frenk, C. S. & White, S. D. M. The structure of cold dark matter halos. Astrophys. J. 462, 563–575 (1996).

  28. 28.

    An, J. H. & Evans, N. W. A cusp slope-central anisotropy theorem. Astrophys. J. 642, 752–758 (2006).

  29. 29.

    Angus, G. W. Dwarf spheroidals in MOND. Mon. Not. R. Astron. Soc. 387, 1481–1488 (2008).

  30. 30.

    Anderson, J. & Bedin, L. R. An empirical pixel-based correction for imperfect CTE. I. HST’s advanced camera for surveys. Public. Astron. Soc. Pac. 122, 1035–1064 (2010).

  31. 31.

    Ubeda, L. & Anderson, J. Study of the Evolution of the ACS/WFC Charge Transfer Efficiency (Space Telescope Science Institute, 2012).

  32. 32.

    Anderson, J. & King, I. PSFs, Photometry, and Astronomy for the ACS/WFC (Space Telescope Science Institute, 2006).

  33. 33.

    Bellini, A. et al. Hubble Space Telescope PROper MOtion (HSTPROMO) catalogs of galactic globular clusters. I. Sample selection, data reduction, and NGC 7078 results. Astrophys. J. 797, 115 (2014).

  34. 34.

    Anderson, J. Empirical PSFs and distortion in the WFC camera. In 2005 HST Calibration Workshop: Hubble After the Transition to Two-Gyro Mode (eds Koekemoer, A. M., Goudfrooij, P. & Dressel, L. L.) (2006).

  35. 35.

    Arenou, F. et al. Gaia Data Release 1. Catalogue validation. Astron. Astrophys. 599, A50 (2017).

  36. 36.

    Trippe, S. et al. High-precision astrometry with MICADO at the European Extremely Large Telescope. Mon. Not. R. Astron. Soc. 402, 1126–1140 (2010).

  37. 37.

    Chiaberge, M., Riess, A., Mutchler, M., Sirianni, M. & Mack, J. ACS charge transfer efficiency. Results from internal and external tests. 2005 HST Calibration Workshop: Hubble After the Transition to Two-Gyro Mode (eds Koekemoer, A. M., Goudfrooij, P. & Dressel, L. L.) (2006).

  38. 38.

    Schönrich, R., Binney, J. & Dehnen, W. Local kinematics and the local standard of rest. Mon. Not. R. Astron. Soc. 403, 1829–1833 (2010).

  39. 39.

    Binney, J. & Tremaine, S. Galactic Dynamics 2nd edn (eds Binney, J. & Tremaine, S.) (Princeton Univ. Press, Princeton, NJ, 2008).

  40. 40.

    Tolstoy, E. et al. Two distinct ancient components in the Sculptor dwarf spheroidal galaxy: first results from the Dwarf Abundances and Radial velocities Team. Astrophys. J. Lett. 617, 119–122 (2004).

  41. 41.

    Zinn, R. & West, M. J. The globular cluster system of the galaxy. III—Measurements of radial velocity and metallicity for 60 clusters and a compilation of metallicities for 121 clusters. Astrophys. J. Suppl. 55, 45–66 (1984).

  42. 42.

    Irwin, M. & Hatzidimitriou, D. Structural parameters for the galactic dwarf spheroidals. Mon. Not. R. Astron. Soc. 277, 1354–1378 (1995).

Download references

Acknowledgements

We made use of data from the European Space Agency mission Gaia (http://www.cosmos.esa.int/gaia), processed by the Gaia Data Processing and Analysis Consortium (http://www.cosmos.esa.int/web/gaia/dpac/consortium). Funding for the Data Processing and Analysis Consortium was provided by national institutions—in particular, the institutions participating in the Gaia Multilateral Agreement. This work was also based on observations made with the National Aeronautics and Space Administration/European Space Agency HST, obtained from the Data Archive at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy under National Aeronautics and Space Administration contract NAS 5-26555. A.H. and L.P. acknowledge financial support from a Vici grant from the Netherlands Organisation for Scientific Research. M.A.B. and A.H. are grateful to Nederlandse Onderzoekschool Voor Astronomie for financial support.

Author information

Affiliations

  1. Kapteyn Astronomical Institute, University of Groningen, Groningen, The Netherlands

    • D. Massari
    • , M. A. Breddels
    • , A. Helmi
    • , L. Posti
    •  & E. Tolstoy
  2. Leiden Observatory, Leiden University, Leiden, The Netherlands

    • D. Massari
    •  & A. G. A. Brown

Authors

  1. Search for D. Massari in:

  2. Search for M. A. Breddels in:

  3. Search for A. Helmi in:

  4. Search for L. Posti in:

  5. Search for A. G. A. Brown in:

  6. Search for E. Tolstoy in:

Contributions

D.M. performed the data analysis and the PM measurements. M.A.B. developed the statistical tools. A.H. derived the relations between observables and orbital anisotropy, coordinated the work and led the scientific interpretation. L.P. performed the orbit computation. A.G.A.B. and E.T. contributed to the presentation of the paper. All authors critically contributed to the work presented here.

Competing interests

The authors declare no competing financial interests.

Corresponding authors

Correspondence to D. Massari or A. Helmi.

Electronic supplementary material

  1. Supplementary Information

    Supplementary Figures 1–4

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/s41550-017-0322-y

Further reading