The local nanohertz gravitational-wave landscape from supermassive black hole binaries

Abstract

Supermassive black hole binary systems form in galaxy mergers and reside in galactic nuclei with large and poorly constrained concentrations of gas and stars. These systems emit nanohertz gravitational waves that will be detectable by pulsar timing arrays. Here we estimate the properties of the local nanohertz gravitational-wave landscape that includes individual supermassive black hole binaries emitting continuous gravitational waves and the gravitational-wave background that they generate. Using the 2 Micron All-Sky Survey, together with galaxy merger rates from the Illustris simulation project, we find that there are on average 91 ± 7 continuous nanohertz gravitational-wave sources, and 7 ± 2 binaries that will never merge, within 225 Mpc. These local unresolved gravitational-wave sources can generate a departure from an isotropic gravitational-wave background at a level of about 20 per cent, and if the cosmic gravitational-wave background can be successfully isolated, gravitational waves from at least one local supermassive black hole binary could be detected in 10 years with pulsar timing arrays.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: The best pulsars boost the number of continuous gravitational-wave detections by a factor of 4.
Fig. 2: The GWB from nearby CGW sources.

References

  1. 1.

    Ferrarese, L. & Ford, H. Supermassive black holes in galactic nuclei: past, present and future research. Space Sci. Rev. 116, 523–624 (2005).

    ADS  Article  Google Scholar 

  2. 2.

    Begelman, M. C., Blandford, R. D. & Rees, M. J. Massive black hole binaries in active galactic nuclei. Nature 287, 307–309 (1980).

    ADS  Article  Google Scholar 

  3. 3.

    Estabrook, F. B. & Wahlquist, H. D. Response of Doppler spacecraft tracking to gravitational radiation. Gen. Relat. Gravit. 6, 439–447 (1975).

    ADS  Article  Google Scholar 

  4. 4.

    Sazhin, M. V. Opportunities for detecting ultralong gravitational waves. Sov. Astron. 22, 36–38 (1978).

    ADS  Google Scholar 

  5. 5.

    Detweiler, S. Pulsar timing measurements and the search for gravitational waves. Astrophys. J. 234, 1100–1104 (1979).

    ADS  Article  Google Scholar 

  6. 6.

    Hellings, R. W. & Downs, G. S. Upper limits on the isotropic gravitational radiation background from pulsar timing analysis. Astrophys. J. Lett. 265, L39–L42 (1983).

    ADS  Article  Google Scholar 

  7. 7.

    Lentati, L. et al. European pulsar timing array limits on an isotropic stochastic gravitational-wave background. Mon. Not. R. Astron. Soc. 453, 2576–2598 (2015).

    ADS  Article  Google Scholar 

  8. 8.

    Arzoumanian, Z. et al. The NANOGrav Nine-year Data Set: limits on the isotropic stochastic gravitational wave background. Astrophys. J. 821, 13 (2016).

    ADS  Article  Google Scholar 

  9. 9.

    Shannon, R. M. et al. Gravitational waves from binary supermassive black holes missing in pulsar observations. Science 349, 1522–1525 (2015).

    ADS  MathSciNet  Article  MATH  Google Scholar 

  10. 10.

    Verbiest, J. P. W. et al. The International Pulsar Timing Array: first data release. Mon. Not. R. Astron. Soc. 458, 1267–1288 (2016).

    ADS  Article  Google Scholar 

  11. 11.

    Skrutskie, M. F. et al. The Two Micron All Sky Survey (2MASS). Astron. J. 131, 1163–1183 (2006).

    ADS  Article  Google Scholar 

  12. 12.

    Rodriguez-Gomez, V. et al. The merger rate of galaxies in the Illustris simulation: a comparison with observations and semi-empirical models. Mon. Not. R. Astron. Soc. 449, 49–64 (2015).

    ADS  Article  Google Scholar 

  13. 13.

    Genel, S. et al. Introducing the Illustris project: the evolution of galaxy populations across cosmic time. Mon. Not. R. Astron. Soc. 445, 175–200 (2014).

    ADS  Article  Google Scholar 

  14. 14.

    Mingarelli, C. M. F., Sidery, T., Mandel, I. & Vecchio, A. Characterizing gravitational wave stochastic background anisotropy with pulsar timing arrays. Phys. Rev. D 88, 062005 (2013).

    ADS  Article  Google Scholar 

  15. 15.

    Schutz, K. & Ma, C.-P. Constraints on individual supermassive black hole binaries from pulsar timing array limits on continuous gravitational waves. Mon. Not. R. Astron. Soc. 459, 1737–1744 (2016).

    ADS  Article  Google Scholar 

  16. 16.

    Jarrett, T. H. et al. 2MASS Extended Source Catalog: overview and algorithms. Astron. J. 119, 2498–2531 (2000).

    ADS  Article  Google Scholar 

  17. 17.

    Ma, C.-P. et al. The MASSIVE Survey. I. A volume-limited integral-field spectroscopic study of the most massive early-type galaxies within 108 Mpc. Astrophys. J. 795, 158 (2014).

    ADS  Article  Google Scholar 

  18. 18.

    Cappellari, M. Effect of environment on galaxies’ mass-size distribution: unveiling the transition from outside-in to inside-out evolution. Astrophys. J. Lett. 778, L2 (2013).

    ADS  Article  Google Scholar 

  19. 19.

    Rosado, P. A. & Sesana, A. Targeting supermassive black hole binaries and gravitational wave sources for the pulsar timing array. Mon. Not. R. Astron. Soc. 439, 3986–4010 (2014).

    ADS  Article  Google Scholar 

  20. 20.

    McConnell, N. J. & Ma, C.-P. Revisiting the scaling relations of black hole masses and host galaxy properties. Astrophys. J. 764, 184 (2013).

    ADS  Article  Google Scholar 

  21. 21.

    Binney, J. & Tremaine, S. Galactic Dynamics 2nd edn. (Princeton Univ. Press, Princeton, 2008).

    Google Scholar 

  22. 22.

    Sesana, A. & Khan, F. M. Scattering experiments meet N-body. I. A practical recipe for the evolution of massive black hole binaries in stellar environments. Mon. Not. R. Astron. Soc. 454, L66–L70 (2015).

    ADS  Article  Google Scholar 

  23. 23.

    Planck Collaboration et al. Planck 2015 results. XIII. Cosmological parameters. Astron. Astrophys. 594, A13 (2016).

    Article  Google Scholar 

  24. 24.

    Peters, P. C. Gravitational radiation and the motion of two point masses. Phys. Rev. 136, 1224–1232 (1964).

    ADS  Article  Google Scholar 

  25. 25.

    Babak, S. et al. European Pulsar Timing Array limits on continuous gravitational waves from individual supermassive slack hole binaries. Mon. Not. R. Astron. Soc. 455, 1665–1679 (2016).

    ADS  Article  Google Scholar 

  26. 26.

    Mingarelli, C. M. F. & Sidery, T. Effect of small interpulsar distances in stochastic gravitational wave background searches with pulsar timing arrays. Phys. Rev. D 90, 062011 (2014).

    ADS  Article  Google Scholar 

  27. 27.

    Ellis, J. A., Siemens, X. & Creighton, J. D. E. Optimal strategies for continuous gravitational wave detection in pulsar timing arrays. Astrophys. J. 756, 175 (2012).

    ADS  Article  Google Scholar 

  28. 28.

    Arzoumanian, Z. et al. Gravitational waves from individual supermassive black hole binaries in circular orbits: limits from the North American Nanohertz Observatory for Gravitational Waves. Astrophys. J. 794, 141 (2014).

    ADS  Article  Google Scholar 

  29. 29.

    The NANOGrav Collaboration. et al. The NANOGrav nine-year data set: observations, arrival time measurements, and analysis of 37 millisecond pulsars. Astrophys. J. 813, 65 (2015).

    ADS  Article  Google Scholar 

  30. 30.

    Desvignes, G. et al. High-precision timing of 42 millisecond pulsars with the European Pulsar Timing Array. Mon. Not. R. Astron. Soc. 458, 3341–3380 (2016).

    ADS  Article  Google Scholar 

  31. 31.

    Taylor, S. R. et al. Are we there yet? Time to detection of nanohertz gravitational waves based on pulsar-timing array limits. Astrophys. J. Lett. 819, L6 (2016).

    ADS  Article  Google Scholar 

  32. 32.

    Taylor, S. R. et al. Limits on anisotropy in the nanohertz stochastic gravitational wave background. Phys. Rev. Lett. 115, 041101 (2015).

    ADS  MathSciNet  Article  Google Scholar 

  33. 33.

    Taylor, S. R. & Gair, J. R. Searching for anisotropic gravitational-wave backgrounds using pulsar timing arrays. Phys. Rev. D 88, 084001 (2013).

    ADS  Article  Google Scholar 

  34. 34.

    Gair, J., Romano, J. D., Taylor, S. & Mingarelli, C. M. F. Mapping gravitational-wave backgrounds using methods from CMB analysis: application to pulsar timing arrays. Phys. Rev. D 90, 082001 (2014).

    ADS  Article  Google Scholar 

  35. 35.

    Cornish, N. J. & van Haasteren, R. Mapping the nano-hertz gravitational wave sky. Preprint at https://arxiv.org/abs/1406.4511 (2014).

  36. 36.

    Quinlan, G. D. The dynamical evolution of massive black hole binaries I. Hardening in a fixed stellar background. New Astron. 1, 35–56 (1996).

    ADS  Article  Google Scholar 

  37. 37.

    Booth, R. S., de Blok, W. J. G., Jonas, J. L. & Fanaroff, B. MeerKAT key project science, specifications, and proposals. Preprint at https://arxiv.org/abs/0910.2935 (2009).

  38. 38.

    Janssen, G. et al. Gravitational wave astronomy with the SKA. Advancing Astrophysics with the Square Kilometre Array (AASKA14) 037 (2015).

  39. 39.

    Sesana, A., Shankar, F., Bernardi, M. & Sheth, R. K. Selection bias in dynamically measured supermassive black hole samples: consequences for pulsar timing arrays. Mon. Not. R. Astron. Soc. 463, L6–L11 (2016).

    ADS  Article  Google Scholar 

  40. 40.

    Wrobel, J. M. & Nyland, K. Discovery of a flat-spectrum radio nucleus in NGC 3115. Astron. J. 144, 160 (2012).

    ADS  Article  Google Scholar 

  41. 41.

    Huchra, J. P. et al. The 2MASS Redshift Survey—description and data release. Astrophys. J. Suppl. S 199, 26 (2012).

    ADS  Article  Google Scholar 

  42. 42.

    Crook, A. C. et al. Groups of galaxies in the Two Micron All Sky Redshift Survey. Astrophys. J. 655, 790–813 (2007).

    ADS  Article  Google Scholar 

  43. 43.

    Paturel, G. et al. HyperLeda. I. Identification and designation of galaxies. Astron. Astrophys. 412, 45–55 (2003).

    ADS  Article  Google Scholar 

  44. 44.

    Lam, M. T., Cordes, J. M., Chatterjee, S. & Dolch, T. Pulsar timing errors from asynchronous multi-frequency sampling of dispersion measure variations. Astrophys. J. 801, 130 (2015).

    ADS  Article  Google Scholar 

  45. 45.

    Simon, J. et al. Gravitational wave hotspots: ranking potential locations of single-source gravitational wave emission. Astrophys. J. 784, 60 (2014).

    ADS  Article  Google Scholar 

  46. 46.

    Springel, V. et al. Simulations of the formation, evolution and clustering of galaxies and quasars. Nature 435, 629–636 (2005).

    ADS  Article  Google Scholar 

  47. 47.

    Abazajian, K. N. et al. The seventh data release of the Sloan Digital Sky Survey. Astrophys. J. Suppl. Ser. 182, 543–558 (2009).

    ADS  Article  Google Scholar 

  48. 48.

    Zahid, H. J., Geller, M. J., Fabricant, D. G. & Hwang, H. S. The scaling of stellar mass and central stellar velocity dispersion for quiescent galaxies at z < 0.7. Astrophys. J. 832, 203 (2016).

    ADS  Article  Google Scholar 

  49. 49.

    Dabringhausen, J., Hilker, M. & Kroupa, P. From star clusters to dwarf galaxies: the properties of dynamically hot stellar systems. Mon. Not. R. Astron. Soc. 386, 864–886 (2008).

    ADS  Article  Google Scholar 

  50. 50.

    De Lucia, G. & Blaizot, J. The hierarchical formation of the brightest cluster galaxies. Mon. Not. R. Astron. Soc. 375, 2–14 (2007).

    ADS  Article  Google Scholar 

  51. 51.

    McBride, J., Fakhouri, O. & Ma, C.-P. Mass accretion rates and histories of dark matter haloes. Mon. Not. R. Astron. Soc. 398, 1858–1868 (2009).

    ADS  Article  Google Scholar 

  52. 52.

    Dehnen, W. A family of potential-density pairs for spherical galaxies and bulges. Mon. Not. R. Astron. Soc. 265, 250–256 (1993).

    ADS  Article  Google Scholar 

  53. 53.

    Jones, E., Oliphant, T., Peterson, P. et al. SciPy: Open source scientific tools for Python (2001); http://www.scipy.org/ (SciPy, accessed 24 August 2016).

  54. 54.

    The Astropy Collaboration. et al. Astropy: a community Python package for astronomy. Astron. Astrophys. 558, A33 (2013).

    Article  Google Scholar 

  55. 55.

    van der Walt, S., Colbert, S. C. & Varoquaux, G. The numpy array: a structure for efficient numerical computation. Comp. Sci. Eng. 13, 22–30 (2011).

    Article  Google Scholar 

  56. 56.

    Barrett, P., Hunter, J., Miller, J. T., Hsu, J.-C. & Greenfield, P. In Astronomical Data Analysis Software and Systems XIV (eds Shopbell, P., Britton, M. & Ebert, R.) 91–95 (Astronomy Society of the Pacific, 2005).

  57. 57.

    Górski, K. M. et al. HEALPix: a framework for high-resolution discretization and fast analysis of data distributed on the sphere. Astrophys. J. 622, 759–771 (2005).

    ADS  Article  Google Scholar 

  58. 58.

    Perez, F. & Granger, B. E. Ipython: a system for interactive scientific computing. Comput. Sci. Eng. 9, 21–29 (2007).

    Article  Google Scholar 

  59. 59.

    Singer, L. P. et al. The first two years of electromagnetic follow-up with advanced LIGO and Virgo. Astrophys. J. 795, 105 (2014).

    ADS  Article  Google Scholar 

  60. 60.

    Mingarelli, C. Chiaramingarelli/nanohertz_gws: first release (2017); https://doi.org/10.5281/zenodo.838712

Download references

Acknowledgements

We thank S. Babak, J. Verbiest, D. Kaplan, E. Barr, K. Górski and E. Sheldon for discussions. This publication makes use of data products from the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by NASA and the National Science Foundation (NSF). C.M.F.M. was supported by a Marie Curie International Outgoing Fellowship within the European Union Seventh Framework Programme. S.R.T was partly supported by appointment to the NASA Postdoctoral Program at the Jet Propulsion Laboratory, administered by Oak Ridge Associated Universities and the Universities Space Research Association through a contract with NASA. A.S. is supported by a University Research Fellowship of the Royal Society. Parts of these computations were performed on the Zwicky cluster at Caltech, which is supported by the Sherman Fairchild Foundation and NSF award PHY-0960291. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. This work has also been supported by NSF award 1458952, NSF AST-1411945 and 1411642. The NANOGrav project receives support from NSF Physics Frontier Center award number 1430284. The Flatiron Institute is supported by the Simons Foundation.

Author information

Affiliations

Authors

Contributions

C.M.F.M. modelled the supermassive black hole evolution, developed and ran the Monte Carlo simulations used here to explore their evolution, analysed the resulting data, produced the figures and table, and was the primary author of this paper. C.M.F.M., T.J.W.L. and S.B.S. developed the concept of this work. A.S., C.P.M., S.C. and T.J.W.L. advised on supermassive black hole astrophysics and helped to interpret the results. J.E.G. and S.C. assembled and inspected the galaxy catalogue. J.A.E. developed the time to detection methods for the IPTA. S.R.T. helped to develop the methods used to turn CGW sources into a GWB, and explore its angular power spectrum.

Corresponding author

Correspondence to Chiara M. F. Mingarelli.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary Information

Supplementary Figures 1–5 and Supplementary References

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mingarelli, C.M.F., Lazio, T.J.W., Sesana, A. et al. The local nanohertz gravitational-wave landscape from supermassive black hole binaries. Nat Astron 1, 886–892 (2017). https://doi.org/10.1038/s41550-017-0299-6

Download citation

Further reading