Discovery of massive star formation quenching by non-thermal effects in the centre of NGC 1097

Abstract

Observations show that massive star formation quenches first at the centres of galaxies. To understand quenching mechanisms, we investigate the thermal and non-thermal energy balance in the central kpc of NGC 1097—a prototypical galaxy undergoing quenching—and present a systematic study of the nuclear star formation efficiency and its dependencies. This region is dominated by the non-thermal pressure from the magnetic field, cosmic rays and turbulence. A comparison of the mass-to-magnetic flux ratio of the molecular clouds shows that most of them are magnetically critical or supported against the gravitational collapse needed to form the cores of massive stars. Moreover, the star formation efficiency of the clouds drops with the magnetic field strength. Such an anti-correlation holds with neither the turbulent nor the thermal pressure. Hence, a progressive build up of the magnetic field results in high-mass stars forming inefficiently, and this may be the cause of the low-mass stellar population in the bulges of galaxies.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Non-thermal synchrotron emission from the central kpc of NGC 1097.
Fig. 2: Magnetic field and molecular clouds.
Fig. 3: Magnetic field and star formation activity in GMAs.
Fig. 4: Clouds with stronger magnetic fields are less efficient at forming massive stars.

References

  1. 1.

    Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. Mon. Not. R. Astron. Soc. 446, 521–554 (2015).

    ADS  Article  Google Scholar 

  2. 2.

    Gatto, A. et al. The SILCC project—III. Regulation of star formation and outflows by stellar winds and supernovae. Mon. Not. R. Astron. Soc. 466, 1903–1924 (2017).

    ADS  Article  Google Scholar 

  3. 3.

    Gressel, O., Elstner, D., Ziegler, U. & Günther, R. Direct simulations of a supernova-driven galactic dynamo. Astron. Astrophys. 486, L35–L38 (2008).

    ADS  Article  Google Scholar 

  4. 4.

    Xu, H., Hui, L., Collins, D. C., Li, S. & Norman, M. L. Turbulence and dynamo in galaxy cluster medium: implications on the origin of cluster magnetic fields. Astrophys. J. 698, L14–L17 (2009).

    ADS  Article  Google Scholar 

  5. 5.

    Wareing, C. J. et al. Magnetohydrodynamic simulations of mechanical stellar feedback in a sheet-like molecular cloud. Mon. Not. R. Astron. Soc. 465, 2757–2783 (2017).

    ADS  Article  Google Scholar 

  6. 6.

    Beck, R. Magnetism in the spiral galaxy NGC 6946: magnetic arms, depolarization rings, dynamo modes, and helical fields. Astron. Astrophys. 470, 539–556 (2007).

    ADS  Article  Google Scholar 

  7. 7.

    Tabatabaei, F. S., Krause, M., Fletcher, A. & Beck, R. High-resolution radio continuum survey of M33. III. Magnetic fields. Astron. Astrophys. 490, 1005–1017 (2008).

    ADS  Article  Google Scholar 

  8. 8.

    Yoast-Hull, T. M., Everett, J. E., Gallagher, J. S. III. & Zweibel, E. G. Winds, clumps, and interacting cosmic rays in M82. Astrophys. J. 768, 53–68 (2013).

    ADS  Article  Google Scholar 

  9. 9.

    Tabatabaei, F. S. et al. The radio spectral energy distribution and star-formation rate calibration in galaxies. Astrophys. J. 836, 185–209 (2017).

    ADS  Article  Google Scholar 

  10. 10.

    Tabatabaei, F. S. Uncovering star formation feedback and magnetism in galaxies with radio continuum surveys. Highlight. Span. Astrophys. IX 257–262 (2017).

  11. 11.

    Vázquez-Semadeni, E. et al. Molecular cloud evolution—IV. Magnetic fields, ambipolar diffusion and the star formation efficiency. Mon. Not. R. Astron. Soc. 414, 2511–2527 (2011).

    ADS  Article  Google Scholar 

  12. 12.

    Körtgen, B. & Banerjee, R. Impact of magnetic fields on molecular cloud formation and evolution. Mon. Not. R. Astron. Soc. 451, 3340–3353 (2015).

    ADS  Article  Google Scholar 

  13. 13.

    Crutcher, R. M. Magnetic fields in molecular clouds. Annu. Rev. Astron. Astrophys. 50, 29–63 (2012).

    ADS  Article  Google Scholar 

  14. 14.

    Pillai, T. et al. Magnetic fields in high-mass infrared dark clouds. Astrophys. J. 799, 74–81 (2015).

    ADS  Article  Google Scholar 

  15. 15.

    Colin, P., Vázquez-Semadeni, E. & Gómez, G. C. Molecular cloud evolution—V. Cloud destruction by stellar feedback. Mon. Not. R. Astron. Soc. 435, 1701–1714 (2013).

    ADS  Article  Google Scholar 

  16. 16.

    Tasker, E. J., Wadsley, J. & Pudritz, R. Star formation in disk galaxies. III. Does stellar feedback result in cloud death? Astrophys. J. 801, 33–47 (2015).

    ADS  Article  Google Scholar 

  17. 17.

    Bell, E. F. Galaxy bulges and their black holes: a requirement for the quenching of star formation. Astrophys. J. 682, 355–360 (2008).

    ADS  Article  Google Scholar 

  18. 18.

    Tacchella, S. et al. Evidence for mature bulges and an inside-out quenching phase 3 billion years after the Big Bang. Science 348, 314–317 (2015).

    ADS  Article  Google Scholar 

  19. 19.

    Storchi-Bergmann, T. et al. Evidence of a starburst within 9 parsecs of the active nucleus of NGC 1097. Astrophys. J. 624, L13–L16 (2005).

    ADS  Article  Google Scholar 

  20. 20.

    Tully, R. B. Nearby Galaxies Catalog (Cambridge Univ. Press, Cambridge, 1988).

    Google Scholar 

  21. 21.

    Higdon, J. L. & Wallin, J. F. A minor-merger interpretation for NGC 1097’s “Jets”. Astrophys. J. 585, 281–297 (2003).

    ADS  Article  Google Scholar 

  22. 22.

    Martin, D. C. et al. The UV-optical galaxy color-magnitude diagram. III. Constraints on evolution from the Blue to the red sequence. Astrophys. J. Suppl. Ser. 173, 342–356 (2007).

    ADS  Article  Google Scholar 

  23. 23.

    Salim, S. et al. UV star formation rates in the local universe. Astrophys. J. Suppl. Ser. 173, 267–292 (2007).

    ADS  Article  Google Scholar 

  24. 24.

    Hsieh, P. Y. et al. Physical properties of the circumnuclear starburst ring in the barred galaxy NGC 1097. Astrophys. J. 736, 129–146 (2011).

    ADS  Article  Google Scholar 

  25. 25.

    Martín, S. et al. Multimolecule ALMA observations toward the Seyfert 1 galaxy NGC 1097. Astron. Astrophys. 573, 116–129 (2015).

    Article  Google Scholar 

  26. 26.

    Prieto, M. A., Maciejewski, W. & Reunanen, J. Feeding the monster: THE Nucleus of NGC 1097 at subarcsecond Scales in the infrared with the very large telescope. Astron. J. 130, 1472–1481 (2005).

    ADS  Article  Google Scholar 

  27. 27.

    Beck, R. et al. Magnetic fields in barred galaxies. IV. NGC 1097 and NGC 1365. Astron. Astrophys. 444, 739–765 (2005).

    ADS  Article  Google Scholar 

  28. 28.

    Jogee, S., Scoville, N. & Kenney, J. D. P. The central region of barred galaxies: molecular environment, starbursts, and secular evolution. Astrophys. J. 630, 837–863 (2005).

    ADS  Article  Google Scholar 

  29. 29.

    Mezcua, M. & Prieto, M. A. Evidence of parsec-scale jets in low-luminosity active galactic nuclei. Astrophys. J. 787, 62–72 (2014).

    ADS  Article  Google Scholar 

  30. 30.

    Fernández-Ontiveros, J. A. et al. Far-infrared line spectra of active galaxies from the Herschel/PACS spectrometer: the complete database. Astrophys. J. Suppl. Ser. 226, 19–45 (2016).

    ADS  Article  Google Scholar 

  31. 31.

    Gaensler, B. M., Madsen, G. J., Chaterjee, S. & Mao, S. A. The vertical structure of warm ionised gas in the MilkyWay. Publ. Astron. Soc. Aust. 25, 184–200 (2008).

    ADS  Article  Google Scholar 

  32. 32.

    Tabatabaei, F. S. et al. A detailed study of the radio-FIR correlation in NGC 6946 with Herschel-PACS/SPIRE from KINGFISH. Astron. Astrophys. 552, 19–37 (2013).

    Article  Google Scholar 

  33. 33.

    Kazantsev, A. P. Enhancement of a magnetic field by a conducting fluid. Sov. Phys. J. Exp. Theor. Phys. 26, 1031 (1968).

    ADS  Google Scholar 

  34. 34.

    Schleicher, D. R. G. & Beck, R. A new interpretation of the far-infrared—radio correlation and the expected breakdown at high redshift. Astron. Astrophys. 556, 142–154 (2013).

    ADS  Article  Google Scholar 

  35. 35.

    Tabatabaei, F. S. et al. An empirical relation between the large-scale magnetic field and the dynamical mass in galaxies. Astrophys. J. 818, L10–L16 (2016).

    ADS  Article  Google Scholar 

  36. 36.

    Federrath, C., Sur, S., Schleicher, D. R. G., Banerjee, R. & Klessen, R. S. A new jeans resolution criterion for (M)HD simulations of self-gravitating gas: application to magnetic field amplification by gravity-driven turbulence. Astrophys. J. 731, 62–78 (2011).

    ADS  Article  Google Scholar 

  37. 37.

    Ferrière, K. M. The interstellar environment of our galaxy. Rev. Mod. Phys. 73,1031–1066 (2001).

    ADS  Article  Google Scholar 

  38. 38.

    Ondrechen, M. P., van der Hulst, J. M. & Hummel, E. H I in barred spiral galaxies. II—NGC 1097. Astrophys. J. 342, 39–48 (1989).

    ADS  Article  Google Scholar 

  39. 39.

    Tabatabaei, F. S. et al. Cold dust in the giant barred galaxy NGC 1365. Astron. Astrophys. 555, 128–139 (2013).

    Article  Google Scholar 

  40. 40.

    Murgia, M. et al. The molecular connection to the FIR-radio continuum correlation in galaxies. Astron. Astrophys. 437, 389–410 (2005).

    ADS  Article  Google Scholar 

  41. 41.

    Yoast-Hull, T. M., Gallagher, J. S. III & Zweibel, E. G. Equipartition and cosmic ray energy densities in central molecular zones of starbursts. Mon. Not. R. Astron. Soc. 457, L29–L33 (2016).

    ADS  Article  Google Scholar 

  42. 42.

    Nakano, T. & Nakamura, T. Gravitational instability of magnetized gaseous Disks 6. Publ. Astron. Soc. Jpn 30, 671–680 (1978).

    ADS  Google Scholar 

  43. 43.

    Basu, S. & Mouschovias, T. C. Magnetic braking, ambipolar diffusion, and the formation of cloud cores and protostars. III. Effect of the initial mass-to-flux ratio. Astrophys. J. 453, 271–283 (1995).

    ADS  Article  Google Scholar 

  44. 44.

    Heiles, C. & Crutcher, R. Magnetic fields in diffuse HI and molecular clouds. Lect. Notes Phys. 664, 137–182 (2005).

    ADS  Article  Google Scholar 

  45. 45.

    Allard, E. L., Knapen, J. H., Peletier, R. F. & Sarzi, M. The star formation history and evolution of the circumnuclear region of M100. Mon. Not. R. Astron. Soc. 371, 1087–1105 (2006).

    ADS  Article  Google Scholar 

  46. 46.

    Mouschovias, T. C. Magnetic braking, ambipolar diffusion, cloud cores, and star formation: natural length scales and protostellar masses. Astrophys. J. 373, 169–186 (1991).

    ADS  Article  Google Scholar 

  47. 47.

    Li, H. & Henning, T. The alignment of molecular cloud magnetic fields with the spiral arms in M33. Nature 479, 499–501 (2011).

    ADS  Article  Google Scholar 

  48. 48.

    Krumholz, M. R. & McKee, C. F. A minimum column density of 1gcm−2 for massive star formation. Nature 451, 1082–1084 (2008).

    ADS  Article  Google Scholar 

  49. 49.

    Fletcher, A., Beck, R., Shukurov, A., Berkhuijsen, E. M. & Horellou, C. Magnetic fields and spiral arms in the galaxy M51. Mon. Not. R. Astron. Soc. 412,2396–2416 (2011).

    ADS  Article  Google Scholar 

  50. 50.

    Tabatabaei, F. S., Berkhuijsen, E. M., Frick, P., Beck, R. & Schinnerer, E. Multi-scale radio-infrared correlations in M 31 and M 33: the role of magnetic fields and star formation. Astron. Astrophys. 557, 129–143 (2013).

    ADS  Article  Google Scholar 

  51. 51.

    Tabatabaei, F. S. et al. High resolution radio continuum survey of M33: II. Thermal and nonthermal emission. Astron. Astrophys. 475, 133–143 (2007).

    ADS  Article  Google Scholar 

  52. 52.

    Mezcua, M. et al. The warm molecular gas and dust of Seyfert galaxies: two different phases of accretion? Mon. Not. R. Astron. Soc. 452, 4128–4144 (2015).

    ADS  Article  Google Scholar 

  53. 53.

    Phillips, M. M., Pagel, B. E. J., Edmunds, M. G. & Diaz, A. Nuclear activity in two spiral galaxies with jets: NGC 1097 and 1598. Mon. Not. R. Astron. Soc. 210,701–710 (1984).

    ADS  Article  Google Scholar 

  54. 54.

    Calzetti, D. et al. The dust content and opacity of actively star-forming galaxies. Astrophys. J. 533, 682–695 (2000).

    ADS  Article  Google Scholar 

  55. 55.

    Osterbrock, D. E. Astrophysics of Gaseous Nebulae and Active Galactic Nuclei (Univ. Science Books, Mill Valley, California, 1989).

  56. 56.

    Ehle, M. & Beck., R. Ionized gas and intrinsic magnetic fields in the spiral galaxy NGC6946. Astron. Astrophys. 273, 45–64 (1993).

    ADS  Google Scholar 

  57. 57.

    Beck, R. & Krause, M. Revised equipartition and minimum energy formula for magnetic field strength estimates from radio synchrotron observations. Astron. Nachr. 326, 414–427 (2005).

    ADS  Article  Google Scholar 

  58. 58.

    Comerón, S. et al. AINUR: Atlas of Images of NUclear Rings. Mon. Not. R. Astron. Soc. 402, 2462–2490 (2010).

    ADS  Article  Google Scholar 

  59. 59.

    Krumholz, M. R. & McKee, C. F. A general theory of turbulence-regulated star formation, from spirals to ultraluminous infrared galaxies. Astrophys. J. 630,250–268 (2005).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

We thank P. Y. Hsieh and R. Beck for providing us with the Submillimeter Array CO and Very Large Array 3.6 cm data. F.S.T. and M.A.P. acknowledge financial support from the Spanish Ministry of Economy and Competitiveness under grant numbers AYA2016-76219-P and MEC-AYA2015-53753-P, respectively.

Author information

Affiliations

Authors

Contributions

F.S.T. conceived and designed the project, provided the thermal and non-thermal separation code, analysed the data and wrote the paper. P.M. co-analysed some of the data and contributed to the materials. M.A.P. helped to set up the project. J.A.F.-O. obtained the continuum-subtracted Hα and Paα maps and produced Fig. 1. M.A.P. and J.A.F.-O. commented on the paper and were involved in the science discussion.

Corresponding author

Correspondence to F. S Tabatabaei.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tabatabaei, F.S., Minguez, P., Prieto, M.A. et al. Discovery of massive star formation quenching by non-thermal effects in the centre of NGC 1097. Nat Astron 2, 83–89 (2018). https://doi.org/10.1038/s41550-017-0298-7

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing