Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The nature of giant clumps in distant galaxies probed by the anatomy of the cosmic snake

Abstract

Giant stellar clumps are ubiquitous in high-redshift galaxies1,2. They are thought to play an important role in the build-up of galactic bulges3 and as diagnostics of star formation feedback in galactic discs4. Hubble Space Telescope (HST) blank field imaging surveys have estimated that these clumps have masses of up to 109.5 M and linear sizes of 1 kpc5,6. Recently, gravitational lensing has also been used to get higher spatial resolution7,8,9. However, both recent lensed observations10,11 and models12,13 suggest that the clumps’ properties may be overestimated by the limited resolution of standard imaging techniques. A definitive proof of this observational bias is nevertheless still missing. Here we investigate directly the effect of resolution on clump properties by analysing multiple gravitationally lensed images of the same galaxy at different spatial resolutions, down to 30 pc. We show that the typical mass and size of giant clumps, generally observed at ~1 kpc resolution in high-redshift galaxies, are systematically overestimated. The high spatial resolution data, only enabled by strong gravitational lensing using currently available facilities, support smaller scales of clump formation by fragmentation of the galactic gas disk via gravitational instabilities.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Overview of the cosmic snake and the counterimage.
Fig. 2: Intrinsic mass and size of the clumps, corrected for lensing.
Fig. 3: Radial distribution of clump mass in the source plane.

References

  1. 1.

    Elmegreen, D. M., Elmegreen, B. G., Ravindranath, S. & Coe, D. A. Resolved galaxies in the Hubble ultra deep field: star formation in disks at high redshift. Astrophys. J. 658, 763–777 (2007).

    ADS  Article  Google Scholar 

  2. 2.

    Dekel, A., Sari, R. & Ceverino, D. Formation of massive galaxies at high redshift: cold streams, clumpy disks, and compact spheroids. Astrophys. J. 703, 785–801 (2009).

    ADS  Article  Google Scholar 

  3. 3.

    Bournaud, F. in Galactic Bulges (eds E. Laurikainen, R. Peletier & D. Gadotti) Vol. 418, 355–390 (Springer, 2016)

  4. 4.

    Mayer, L. et al. Clumpy disks as a testbed for feedback-regulated galaxy formation. Astrophys. J. 830, L13–L19 (2016).

    ADS  Article  Google Scholar 

  5. 5.

    Guo, Y., Giavalisco, M., Ferguson, H. C., Cassata, P. & Koekemoer, A. M. Multi-wavelength view of kiloparsec-scale clumps in star-forming galaxies at z2. Astrophys. J. 757, 120–141 (2012).

    ADS  Article  Google Scholar 

  6. 6.

    Elmegreen, B. G. et al. Massive clumps in local galaxies: comparisons with high-redshift clumps. Astrophys. J. 774, 86–99 (2013).

    ADS  Article  Google Scholar 

  7. 7.

    Adamo, A. et al. High-resolution study of the cluster complexes in a lensed spiral at redshift 1.5: constraints on the bulge formation and disk evolution. Astrophys. J. 766, 105–130 (2013).

    ADS  Article  Google Scholar 

  8. 8.

    Wuyts, E., Rigby, J. R., Gladders, M. D. & Sharon, K. A magnified view of the kinematics and morphology of RCSGA 032727-132609: zooming in on a merger at z = 1.7. Astrophys. J. 781, 61–77 (2014).

    ADS  Article  Google Scholar 

  9. 9.

    Johnson, T. L. et al. Star formation at z = 2.481 in the lensed galaxy SDSS J1110 + 6459: star formation down to 30 pc scales. Astrophys. J. Lett. 843, L21–L25 (2017).

    ADS  Article  Google Scholar 

  10. 10.

    Dessauges-Zavadsky, M., Schaerer, D., Cava, A., Mayer, L. & Tamburello, V. On the stellar masses of giant clumps in distant star-forming galaxies. Astrophys. J. Lett. 836, L22–L27 (2017).

    ADS  Article  Google Scholar 

  11. 11.

    Rigby, J. R. et al. Star formation at z = 2.481 in the lensed galaxy SDSS J1110 + 6459. II. What is missed at the normal resolution of the Hubble Space Telescope? Astrophys. J. 843, 79–87 (2017).

    ADS  Article  Google Scholar 

  12. 12.

    Tamburello, V. et al. Clumpy galaxies seen in H-alpha: inflated observed clump properties due to limited spatial resolution and sensitivity. Mon. Not. Roy. Astron. Soc 468, 4792–4800 (2017).

    ADS  Article  Google Scholar 

  13. 13.

    Behrendt, M., Burkert, A. & Schartmann, M. Clusters of small clumps can explain the peculiar properties of giant clumps in high-redshift galaxies. Astrophys. J. Lett. 819, L2–L6 (2016).

    ADS  Article  Google Scholar 

  14. 14.

    Ebeling, H. et al. A spectacular giant arc in the massive cluster lens MACSJ1206.2-0847. Mon. Not. Roy. Astron. Soc. 395, 1213–1224 (2009).

    ADS  Article  Google Scholar 

  15. 15.

    Wisnioski, E. et al. Scaling relations of star-forming regions: from kpc-sized clumps to HII regions. Mon. Not. Roy. Astron. Soc. 422, 3339–3355 (2012).

    ADS  Article  Google Scholar 

  16. 16.

    Fisher, D. B. et al. DYNAMO-HST survey: clumps in nearby massive turbulent discs and the effects of clump clustering on kiloparsec scale measurements of clumps. Mon. Not. Roy. Astron. Soc. 464, 491–507 (2017).

    ADS  Article  Google Scholar 

  17. 17.

    Postman, M. et al. The Cluster Lensing and Supernova survey with Hubble: an overview. Astrophys. J. Suppl. Ser. 199, 25–47 (2012).

    ADS  Article  Google Scholar 

  18. 18.

    Bolzonella, M., Miralles, J.-M. & Pelló, R. Photometric redshifts based on standard SED fitting procedures. Astronom. Astrophys. 363, 476–492 (2000).

    ADS  Google Scholar 

  19. 19.

    Tamburello, V., Mayer, L., Shen, S. & Wadsley, J. A lower fragmentation mass scale in high-redshift galaxies and its implications on giant clumps: a systematic numerical study. Mon. Not. Roy. Astron. Soc. 453, 2490–2514 (2015).

    ADS  Article  Google Scholar 

  20. 20.

    Bolatto, A. D., Leroy, A. K., Rosolowsky, E., Walter, F. & Blitz, L. The resolved properties of extragalactic giant molecular clouds. Astrophys. J. 686, 948–965 (2008).

    ADS  Article  Google Scholar 

  21. 21.

    Overzier, R. A. et al. Local Lyman break galaxy analogs: the impact of massive star-forming clumps on the interstellar medium and the global structure of young, forming galaxies. Astrophys. J. 706, 203–222 (2009).

    ADS  Article  Google Scholar 

  22. 22.

    Förster Schreiber, N. M. et al. Constraints on the assembly and dynamics of galaxies. II. Properties of kiloparsec-scale clumps in rest-frame optical emission of z2 star-forming galaxies. Astrophys. J. 739, 45–69 (2011).

    ADS  Article  Google Scholar 

  23. 23.

    Soto, E. et al. Physical properties of sub-galactic clumps at 0.5 ≤ z ≤ 1.5 in the UVUDF. Astrophys. J. 837, 6–20 (2017).

    ADS  Article  Google Scholar 

  24. 24.

    Genzel, R. et al. The SINS survey of z ~ 2 galaxy kinematics: properties of the giant star-forming clumps. Astrophys. J. 733, 101–130 (2011).

    ADS  Article  Google Scholar 

  25. 25.

    Mandelker, N. et al. Giant clumps in simulated high-z galaxies: properties, evolution and dependence on feedback. Mon. Not. Roy. Astron. Soc. 464, 635–665 (2017).

    ADS  Article  Google Scholar 

  26. 26.

    Oklopčić, A. et al. Giant clumps in the FIRE simulations: a case study of a massive high-redshift galaxy. Mon. Not. Roy. Astron. Soc. 465, 952–969 (2017).

    ADS  Article  Google Scholar 

  27. 27.

    Egami, E. et al. The Spitzer Massive Lensing Cluster Survey. Astron. Soc. Pacific Conf. Ser. 357, 242 (2006).

    ADS  Google Scholar 

  28. 28.

    Egami, E. et al. The Herschel Lensing Survey (HLS): overview. Astronom. Astrophys 518, L12 (2010).

    ADS  Article  Google Scholar 

  29. 29.

    Pérez-González, P. G. et al. The stellar mass assembly of galaxies from z = 0 to z = 4: analysis of a sample selected in the rest-frame near-infrared with Spitzer. Astrophys. J. 675, 234–261 (2008).

    Article  Google Scholar 

  30. 30.

    Barro, G. et al. UV-to-FIR analysis of Spitzer/IRAC sources in the extended groth strip. I. Multi-wavelength photometry and spectral energy distributions. Astrophys. J. Suppl. Ser. 193, 13 (2011).

    ADS  Article  Google Scholar 

  31. 31.

    Barro, G. et al. UV-to-FIR analysis of Spitzer/IRAC sources in the extended groth strip. II. Photometric redshifts, stellar masses, and star formation rates. Astrophys. J. Suppl. Ser. 193, 30 (2011).

    ADS  Article  Google Scholar 

  32. 32.

    Buck, T. et al. NIHAO XIII: clumpy discs or clumpy light in high redshift galaxies? Mon. Not. Roy. Astron. Soc. 468, 3628–3649 (2017).

    ADS  Article  Google Scholar 

  33. 33.

    Ryan, R. E. iGalFit: an interactive tool for GalFit. Preprint at https://arxiv.org/abs/1110.1090 (2011)

  34. 34.

    Peng, C. Y., Ho, L. C., Impey, C. D. & Rix, H.-W. Detailed decomposition of galaxy images. II. Beyond axisymmetric models. Astronom. J. 139, 2097–2129 (2010).

    ADS  Article  Google Scholar 

  35. 35.

    Schlafly, E. F. & Finkbeiner, D. P. Measuring reddening with Sloan Digital Sky Survey stellar spectra and recalibrating SFD. Astrophys. J. 737, 103 (2011).

    ADS  Article  Google Scholar 

  36. 36.

    Schaerer, D. & de Barros, S. On the physical properties of z 6–8 galaxies. Astronom. Astrophys 515, A73 (2010).

    Article  MATH  Google Scholar 

  37. 37.

    Bruzual, G. & Charlot, S. Stellar population synthesis at the resolution of 2003. Mon. Not. Roy. Astron. Soc 344, 1000–1028 (2003).

    ADS  Article  Google Scholar 

  38. 38.

    Pérez-Montero, E. et al. Physical properties of galaxies and their evolution in the VIMOS VLT Deep Survey. II. Extending the mass-metallicity relation to the range z ≈ 0.89-1.24. Astronom. Astrophys 495, 73–81 (2009).

    ADS  Article  Google Scholar 

  39. 39.

    Kewley, L. J. & Dopita, M. A. Using strong lines to estimate abundances in extragalactic HII regions and starburst galaxies. Astrophys. J. Suppl. Ser. 142, 35–52 (2002).

    ADS  Article  Google Scholar 

  40. 40.

    Salpeter, E. E. The luminosity function and stellar evolution. Astrophys. J. 121, 161 (1955).

    ADS  Article  Google Scholar 

  41. 41.

    Calzetti, D. et al. The dust content and opacity of actively star-forming galaxies. Astrophys. J. 533, 682–695 (2000).

    ADS  Article  Google Scholar 

  42. 42.

    Schaerer, D., de Barros, S. & Sklias, P. Properties of z 3-6 Lyman break galaxies. I. Testing star formation histories and the SFR-mass relation with ALMA and near-IR spectroscopy. Astronom. Astrophys 549, A4 (2013).

    Article  Google Scholar 

  43. 43.

    Biviano, A. et al. CLASH-VLT: the mass, velocity-anisotropy, and pseudo-phase-space density profiles of the z = 0.44 galaxy cluster MACS J1206.2-0847. Astronom. Astrophys. 558, A1 (2013).

    Article  Google Scholar 

  44. 44.

    Eichner, T. et al. Galaxy halo truncation and giant arc surface brightness reconstruction in the cluster MACSJ1206.2-0847. Astrophys. J. 774, 124 (2013).

    ADS  Article  Google Scholar 

  45. 45.

    Zitrin, A. et al. CLASH: new multiple images constraining the inner mass profile of MACS J1206.2-0847. Astrophys. J. 749, 97 (2012).

    ADS  Article  Google Scholar 

  46. 46.

    Christensen, L. et al. The low-mass end of the fundamental relation for gravitationally lensed star-forming galaxies at 1 < z < 6. Mon. Not. Roy. Astron. Soc 427, 1953 (2012).

    ADS  Article  Google Scholar 

  47. 47.

    Richard, J., Kneib, J.-P., Limousin, M., Edge, A. & Jullo, E. Abell 370 revisited: refurbished Hubble imaging of the first strong lensing cluster. Mon. Not. Roy. Astron. Soc 402, L44–L48 (2010).

    ADS  Article  Google Scholar 

  48. 48.

    Jullo, E. et al. A Bayesian approach to strong lensing modelling of galaxy clusters. New J. Phys. 9, 447 (2007).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

The work of A.C., D.S., M.D.-Z., L.M. and V.T. is supported by the STARFORM Sinergia Project funded by the Swiss National Science Foundation. J.R. acknowledges support from the European Research Council starting grant 336736-CALENDS. P.G.P.-P. acknowledges support from Spanish Government MINECO grants AYA2015-70815-ERC and AYA2015-63650-P. This work has made use of the Rainbow Cosmological Surveys Database, which is operated by the Universidad Complutense de Madrid (UCM), partnered with the University of California Observatories at Santa Cruz (UCO/Lick, UCSC). Based on observations made with the NASA/ESA Hubble Space Telescope, and obtained from the Hubble Legacy Archive, which is a collaboration between the Space Telescope Science Institute (STScI/NASA), the Space Telescope European Coordinating Facility (ST-ECF/ESA) and the Canadian Astronomy Data Centre (CADC/NRC/CSA).

Author information

Affiliations

Authors

Contributions

Data analysis and interpretation: A.C., D.S., J.R., P.P.-G., M.D.-Z., L.M. and V.T. SED fitting: D.S. and A.C. Photometry: A.C. and P.P-G. Lens modelling: J.R. and A.C. Drafting text, figures and methods: the bulk of the text was written by A.C. All authors commented on the manuscript at all stages.

Corresponding author

Correspondence to Antonio Cava.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary Information

Supplementary Figures 1–10 and Supplementary Tables 1–5

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cava, A., Schaerer, D., Richard, J. et al. The nature of giant clumps in distant galaxies probed by the anatomy of the cosmic snake. Nat Astron 2, 76–82 (2018). https://doi.org/10.1038/s41550-017-0295-x

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing