The evolution of Saturn’s radiation belts modulated by changes in radial diffusion


Globally magnetized planets, such as the Earth1 and Saturn2, are surrounded by radiation belts of protons and electrons with kinetic energies well into the million electronvolt range. The Earth’s proton belt is supplied locally from galactic cosmic rays interacting with the atmosphere3, as well as from slow inward radial transport4. Its intensity shows a relationship with the solar cycle4,5 and abrupt dropouts due to geomagnetic storms6,7. Saturn’s proton belts are simpler than the Earth’s because cosmic rays are the principal source of energetic protons8 with virtually no contribution from inward transport, and these belts can therefore act as a prototype to understand more complex radiation belts. However, the time dependence of Saturn’s proton belts had not been observed over sufficiently long timescales to test the driving mechanisms unambiguously. Here we analyse the evolution of Saturn’s proton belts over a solar cycle using in-situ measurements from the Cassini Saturn orbiter and a numerical model. We find that the intensity in Saturn’s proton radiation belts usually rises over time, interrupted by periods that last over a year for which the intensity is gradually dropping. These observations are inconsistent with predictions based on a modulation in the cosmic-ray source, as could be expected4,9 based on the evolution of the Earth’s proton belts. We demonstrate that Saturn’s intensity dropouts result instead from losses due to abrupt changes in magnetospheric radial diffusion.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Spatial structure of Saturn’s proton radiation belts.
Fig. 2: The time dependence of Saturn’s radiation belts differs from that of the Earth.
Fig. 3: Time variability of Saturn’s proton radiation belts is driven by radial diffusion.


  1. 1.

    Van Allen, J. A. & Frank, L. A. Radiation around the Earth to a radial distance of 107,400 km. Nature 183, 430–434 (1959).

    ADS  Article  Google Scholar 

  2. 2.

    Van Allen, J. A., Randall, B. A. & Thomsen, M. F. Sources and sinks of energetic electrons and protons in Saturn’s magnetosphere. J. Geophys. Res. 85, 5679–5694 (1980).

    ADS  Article  Google Scholar 

  3. 3.

    Singer, S. F. Trapped albedo theory of the radiation belt. Phys. Rev. Lett. 1, 181–183 (1958).

    ADS  Article  Google Scholar 

  4. 4.

    Selesnick, R. S., Looper, M. D. & Mewaldt, R. A. A theoretical model of the inner proton radiation belt. Space Weather 5, 4003 (2007).

    ADS  Article  Google Scholar 

  5. 5.

    Li, X., Baker, D. N., Kanekal, S. G., Looper, M. & Temerin, M. Long term measurements of radiation belts by SAMPEX and their variations. Geophys. Res. Lett. 28, 3827–3830 (2001).

    ADS  Article  Google Scholar 

  6. 6.

    Lorentzen, K. R., Mazur, J. E., Looper, M. D., Fennell, J. F. & Blake, J. B. Multisatellite observations of MeV ion injections during storms. J. Geophys. Res. 107, 1231 (2002).

    Article  Google Scholar 

  7. 7.

    Selesnick, R. S., Hudson, M. K. & Kress, B. T. Direct observation of the CRAND proton radiation belt source. J. Geophys. Res. 118, 7532–7537 (2013).

    Article  Google Scholar 

  8. 8.

    Cooper, J. F. Nuclear cascades in Saturn’s rings: cosmic ray albedo neutron decay and origins of trapped protons in the inner magnetosphere. J. Geophys. Res. 88, 3945–3954 (1983).

    ADS  Article  Google Scholar 

  9. 9.

    Roussos, E. et al. Long- and short-term variability of Saturn’s ionic radiation belts. J. Geophys. Res. 116, A02217 (2011).

    ADS  Article  Google Scholar 

  10. 10.

    Walt, M. Introduction to Geomagnetically Trapped Radiation. 1st edn, (Cambridge Univ. Press, Cambridge, 1994).

    Google Scholar 

  11. 11.

    Hood, L. L. Radial diffusion in Saturn’s radiation belts: a modeling analysis assuming satellite and ring E absorption. J. Geophys. Res. 88, 808–818 (1983).

    ADS  Article  Google Scholar 

  12. 12.

    Sauer, H. H. On Saturnian cosmic ray cutoff rigidities. Geophys. Res. Lett. 7, 215–217 (1980).

    ADS  Article  Google Scholar 

  13. 13.

    Usoskin, I. G., Alanko-Huotari, K., Kovaltsov, G. A. & Mursula, K. Heliospheric modulation of cosmic rays: monthly reconstruction for 1951–2004. J. Geophys. Res. 110, 12108 (2005).

    Article  Google Scholar 

  14. 14.

    Qin, M. et al. Solar cycle variations of trapped proton flux in the inner radiation belt. J. Geophys. Res. 119, 9658–9669 (2014).

    Article  Google Scholar 

  15. 15.

    Gombosi, T. I. et al. in Saturn from Cassini-Huygens 1st edn (eds. Dougherty, M. K. et al.) 203–255 (Springer Science+Business Media, Heidelberg, 2009).

  16. 16.

    Mauk, B. H. et al. in Saturn from Cassini-Huygens 1st edn (eds. Dougherty, M. K. et al.) 281–331 (Springer Science+Business Media,Heidelberg, 2009).

  17. 17.

    Southwood, D. J. & Kivelson, M. G. Magnetospheric interchange motions. J. Geophys. Res. 94, 299–308 (1989).

    ADS  Article  Google Scholar 

  18. 18.

    Paranicas, C. et al. Sources and losses of energetic protons in Saturn’s magnetosphere. Icarus 197, 519–525 (2008).

    ADS  Article  Google Scholar 

  19. 19.

    Hedman, M. M. et al. An observed correlation between plume activity and tidal stresses on Enceladus. Nature 500, 182–184 (2013).

    ADS  Article  Google Scholar 

  20. 20.

    Elrod, M. K., Tseng, W.-L., Woodson, A. K. & Johnson, R. E. Seasonal and radial trends in Saturn’s thermal plasma between the main rings and Enceladus. Icarus 242, 130–137 (2014).

    ADS  Article  Google Scholar 

  21. 21.

    Kollmann, P., Roussos, E., Paranicas, C., Krupp, N. & Haggerty, D. K. Processes forming and sustaining Saturn’s proton radiation belts. Icarus 222, 323–341 (2013).

    ADS  Article  Google Scholar 

  22. 22.

    Bunce, E. J. et al. Cassini observations of the variation of Saturn’s ring current parameters with system size. J. Geophys. Res. (Space Phys.) 112, A10202 (2007).

    ADS  Article  Google Scholar 

  23. 23.

    Sergis, N. et al. Radial and local time structure of the Saturnian ring current, revealed by Cassini. J. Geophys. Res. (Space Phys.) 122, 1803–1815 (2017).

    ADS  Google Scholar 

  24. 24.

    Roussos, E. et al. Discovery of a transient radiation belt at Saturn. Geophys. Res. Lett. 35, 22106 (2008).

    ADS  Article  Google Scholar 

  25. 25.

    Roussos, E. et al. The variable extension of Saturn’s electron radiation belts. Planet. Space Sci. 104, 3–17 (2014).

    ADS  Article  Google Scholar 

  26. 26.

    Santos-Costa, D., Blanc, M., Maurice, S. & Bolton, S. J. Modeling the electron and proton radiation belts of Saturn. Geophys. Res. Lett. 30, 2059 (2003).

    ADS  Article  Google Scholar 

  27. 27.

    Meeks, Z., Simon, S. & Kabanovic, S. A comprehensive analysis of ion cyclotron waves in the equatorial magnetosphere of Saturn. Planet. Space Sci. 129,47–60 (2016).

    ADS  Article  Google Scholar 

  28. 28.

    Tsuchiya, F., Misawa, H., Imai, K. & Morioka, A. Short-term changes in Jupiter’s synchrotron radiation at 325 MHz: enhanced radial diffusion in Jupiter’s radiation belt driven by solar UV/EUV heating. J. Geophys. Res. 116, A09202 (2011).

    ADS  Google Scholar 

  29. 29.

    Hill, T. W. Inertial limit on corotation. J. Geophys. Res. 84, 6554–6558 (1979).

    ADS  Article  Google Scholar 

  30. 30.

    Thomsen, M. F. et al. Saturn’s inner magnetospheric convection pattern: Further evidence. J. Geophys. Res. 117, 9208 (2012).

    Article  Google Scholar 

  31. 31.

    Brice, N. M. & McDonough, T. R. Jupiter’s radiation belts. Icarus 18, 206–219 (1973).

    ADS  Article  Google Scholar 

  32. 32.

    Krimigis, S. M. et al. Magnetosphere Imaging Instrument (MIMI) on the Cassini Mission to Saturn/Titan. Space Sci. Rev. 114,233–329 (2004).

    ADS  Article  Google Scholar 

  33. 33.

    Vandegriff, J. et al. Cassini/MIMI Instrument Data User Guide. NASA’s Planetary Data System (2013);

  34. 34.

    Roederer, J. G. Dynamics of Geomagnetically Trapped Radiation (Springer, Heidelberg, 1970).

    Google Scholar 

  35. 35.

    Dougherty, M. K. et al. The Cassini magnetic field investigation. Space Sci. Rev. 114, 331–383 (2004).

    ADS  Article  Google Scholar 

  36. 36.

    Burton, M. E., Dougherty, M. K. & Russell, C. T. Saturn’s internal planetary magnetic field. Geophys. Res. Lett. 37, 24105 (2010).

    ADS  Article  Google Scholar 

  37. 37.

    Kollmann, P. et al. Energetic particle phase space densities at Saturn: Cassini observations and interpretations. J. Geophys. Res. 116, A05222 (2011).

    ADS  Article  Google Scholar 

  38. 38.

    Vos, E. E. & Potgieter, M. S. Global gradients for cosmic-ray protons in the heliosphere during the solar minimum of cycle 23/24. Sol. Phys. 291, 2181–2195 (2016).

    ADS  Article  Google Scholar 

  39. 39.

    Kotova, A. Energetic Charged Particles Tracing Techniques and their Application in the Magnetosphere of Saturn. PhD thesis, Univ. Paul Sabatier Toulouse III (2016).

  40. 40.

    Woods, T. et al. TIMED Solar EUV experiment. Phys. Chem. Earth C 25, 393–396 (2000).

    Google Scholar 

  41. 41.

    NIST Chemistry WebBook National Institute of Standards and Technology, 2015);

  42. 42.

    Waite, J. H. et al. Electron precipitation and related aeronomy of the Jovian thermosphere and ionosphere. J. Geophys. Res. 88, 6143–6163 (1983).

    ADS  Article  Google Scholar 

  43. 43.

    Dragt, A. J., Austin, M. M. & White, R. S. Cosmic ray and solar proton albedo neutron decay injection. J. Geophys. Res. 71, 1293–1304 (1966).

    ADS  Article  Google Scholar 

  44. 44.

    Van Allen, J. A. In Saturn (eds Gerhels, T. & Matthews, M. S.) 281–317 (Univ. Arizona Press, Tucson, 1984).

  45. 45.

    Roussos, E. et al. Solar energetic particles (SEP) and galactic cosmic rays (GCR) as tracers of solar wind conditions near Saturn: event lists and applications. Icarus 300, 47–71 (2018).

    ADS  Article  Google Scholar 

Download references


The Johns Hopkins University Applied Physics Laboratory (JHU/APL) authors were partially supported by NASA Cassini Data Analysis grant NNX13AG05G (FG3TK) and by the NASA Office of Space Science under task order 003 of contract NAS5-97271 between NASA/GSFC and JHU. The Max Planck Institute authors were partially supported by the German Space Agency (DLR) under contract 50 OH 1502, the Max Planck Society and the Max Planck Institute for Solar System Research (MPS). The authors thank A. Lagg (MPS) for analysis software support, and J. Vandegriff (JHU/APL) and M. Kusterer (JHU/APL) for data reduction.

Author information




All authors contributed to the interpretation of the data and writing of the manuscript. P.K. and E.R. both performed the data analysis. E.R. developed the study concept. P.K. performed the modelling. A.K. performed the cosmic ray tracing. C.P. and N.K. administered the project on the US and German sides, respectively.

Corresponding author

Correspondence to P. Kollmann.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kollmann, P., Roussos, E., Kotova, A. et al. The evolution of Saturn’s radiation belts modulated by changes in radial diffusion. Nat Astron 1, 872–877 (2017).

Download citation


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing