Magma oceans and enhanced volcanism on TRAPPIST-1 planets due to induction heating

Subjects

Abstract

Low-mass M stars are plentiful in the Universe and often host small, rocky planets detectable with current instrumentation. These stars host magnetic fields, some of which have been observed to exceed a few hundred gauss. Recently, seven small planets have been discovered orbiting the ultra-cool M dwarf TRAPPIST-1, which has an observed magnetic field of 600 G. We suggest electromagnetic induction heating as an energy source inside these planets. If the stellar rotation and magnetic dipole axes are inclined with respect to each other, induction heating can melt the upper mantle and enormously increase volcanic activity, sometimes producing a magma ocean below the planetary surface. We show that induction heating leads the four innermost TRAPPIST-1 planets, one of which is in the habitable zone, either to evolve towards a molten mantle planet, or to experience increased outgassing and volcanic activity, while the three outermost planets remain mostly unaffected.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Sketch of the induction heating mechanism.
Fig. 2: Interior profiles and skin depth for all seven TRAPPIST-1 planets.
Fig. 3: Induction heating inside the seven TRAPPIST-1 planets showing the energy release rate inside the planets, normalized to the radius of each planet.
Fig. 4: Model results for ten different example parameter cases.
Fig. 5: Mantle depletion due to melting for TRAPPIST-1c (parameter case 1).

References

  1. 1.

    Rudnev, V. Handbook of Induction Heating (Manufacturing, Engineering and Materials Processing). (Marcel Dekker, New York, 2003).

    Google Scholar 

  2. 2.

    Morin, J. et al. Large-scale magnetic topologies of late M dwarfs.Mon Not. R Astron. Soc. 407, 2269–2286 (2010).

    ADS  Article  Google Scholar 

  3. 3.

    West, A. A. et al. Constraining the age-activity relation for cool stars: the sloan digital sky Survey data release 5 low-mass star spectroscopic sample. Astron. J. 135, 785–795 (2008).

    ADS  Article  Google Scholar 

  4. 4.

    Laine, R. O. & Lin, D. N. C. Interaction of close-in planets with the magnetosphere of their host stars. II. Super-Earths as unipolar inductors and their orbital evolution. Astrophys. J. 745, 2 (2012).

    ADS  Article  Google Scholar 

  5. 5.

    Goldreich, P. & Lynden-Bell, D. Io, a Jovian unipolar inductor. Astrophys. J. 156, 59–78 (1969).

    ADS  Article  Google Scholar 

  6. 6.

    Parkinson, W. D. Introduction to Geomagnetism (Scottish Academic Press, Edinburgh, 1983).

  7. 7.

    Gillon, M. et al. Temperate Earth-sized planets transiting a nearby ultracool dwarf star. Nature 533, 221–224 (2016).

    ADS  Article  Google Scholar 

  8. 8.

    Gillon, M. et al. Seven temperate terrestrial planets around the nearby ultracool dwarf star TRAPPIST-1. Nature 542, 456–460 (2017).

    ADS  Article  Google Scholar 

  9. 9.

    Luger, R. et al. A seven-planet resonant chain in TRAPPIST-1. Nat. Astron. 1, 0129 (2017).

    Article  Google Scholar 

  10. 10.

    Burgasser, A. J. & Mamajek, E. E. On the age of the TRAPPIST-1 system. Astrophys. J. 845, 110 (2017).

    ADS  Article  Google Scholar 

  11. 11.

    Johnstone, C. P., Güdel, M., Brott, I. & Lüftinger, T. Stellar winds on the main-sequence. II. The evolution of rotation and winds. Astron. Astrophys. 577, A28 (2015).

    ADS  Article  Google Scholar 

  12. 12.

    Irwin, J. et al. On the angular momentum evolution of fully convective stars: rotation periods for field M-dwarfs from the MEarth transit survey. Astrophys. J. 727, 56 (2011).

    ADS  Article  Google Scholar 

  13. 13.

    Reiners, A. & Basri, G. A volume-limited sample of 63 M7–M9.5 dwarfs. II. Activity, magnetism, and the fade of the rotation-dominated dynamo. Astrophys. J. 710, 924–935 (2010).

    ADS  Article  Google Scholar 

  14. 14.

    Xu, Y., Shankland, T. J. & Poe, B. T. Laboratory-based electrical conductivity in the Earth’s mantle. J. Geophys. Res. 105, 27 (2000).

    Google Scholar 

  15. 15.

    Yoshino, T., Manthilake, G., Matsuzaki, T. & Katsura, T. Dry mantle transition zone inferred from the conductivity of wadsleyite and ringwoodite. Nature 451, 326–329 (2008).

    ADS  Article  Google Scholar 

  16. 16.

    Yoshino, T. & Katsura, T. Electrical conductivity of mantle minerals: role of water in conductivity anomalies. Annu. Rev. Earth. Planet. Sci. 41,605–628 (2013).

    ADS  Article  Google Scholar 

  17. 17.

    Noack, L., Rivoldini, A. & Van Hoolst, T. Modeling the evolution of terrestrial and water-rich planets and moons. Int. J. Adv. Syst. Meas. 9, 66–76 (2016).

    Google Scholar 

  18. 18.

    Pearson, D. G. et al. Hydrous mantle transition zone indicated by ringwoodite included within diamond. Nature 507, 221–2244 (2014).

    ADS  Article  Google Scholar 

  19. 19.

    Noack, L., Rivoldini, A. & Van Hoolst, T. Volcanism and outgassing of stagnant-lid planets: implications for the habitable zone. Phys. Earth Planet. Inter. 269, 40–57 (2017).

    ADS  Article  Google Scholar 

  20. 20.

    Hirschmann, M. M. Mantle solidus: experimental constraints and the effects of peridotite composition. Geochem. Geophys. Geosyst. 1,2000GC000070 (2000).

  21. 21.

    Ohtani, E., Nagata, Y., Suzuki, A. & Kato, T. Melting relations of peridotite and the density crossover in planetary mantles. Chem. Geol. 120,207–221 (1995).

    ADS  Article  Google Scholar 

  22. 22.

    Reese, C. C., Solomatov, V. S. & Moresi, L. Heat transport efIiciency for stagnant lid convection with dislocation viscosity: application to Mars and Venus. J. Geophys. Res. 103, 13643–13657 (1998).

    ADS  Article  Google Scholar 

  23. 23.

    Crisp, J. Rates of magma emplacement and volcanic output. J. Volcanol. Geotherm. Res. 20, 177–211 (1984).

    ADS  Article  Google Scholar 

  24. 24.

    Ni, H. & Keppler, H. Carbon in silicate melts. Rev. Mineral. Geochem. 75, 251–287 (2013).

    Article  Google Scholar 

  25. 25.

    Yoshino, T., Matsuzaki, T., Yamashita, S. & Katsura, T. Hydrous olivine unable to account for conductivity anomaly at the top of the asthenosphere. Nature 443, 973–976 (2006).

    ADS  Article  Google Scholar 

  26. 26.

    Gaillard, F. & Iacono Marziano, G. Electrical conductivity of magma in the course of crystallization controlled by their residual liquid composition. J. Geophys. Res. 110, B06204 (2005).

    ADS  Article  Google Scholar 

  27. 27.

    Maumus, J., Bagdassarov, N. & Schmeling, H. Electrical conductivity and partial melting of mafic rocks under pressure. Geochim. Cosmochim. Acta. 69, 4703–4718 (2005).

    ADS  Article  Google Scholar 

  28. 28.

    Yoshino, T., Laumonier, M., McIsaac, E. & Katsura, T. Electrical conductivity of basaltic and carbonatite melt-bearing peridotites at high pressures: implications for melt distribution and melt fraction in the upper mantle. Earth. Planet. Sci. Lett. 295, 593–602 (2010).

    ADS  Article  Google Scholar 

  29. 29.

    Beuchert, J. B. & Schmeling, H. A melting model for the lowermost mantle using Clapeyron slopes derived from experimental data: consequences for the thickness of ultralow velocity zones (ULVZs). Geochem. Geophys. Geosyst. 14, 197–208 (2013).

    ADS  Article  Google Scholar 

  30. 30.

    Breuer, D. & Moore, B. Dynamics and thermal history of the terrestrial planets, the Moon, and Io. Physics of Terrestrial Planets and Moons 10, 255–305 (2015).

    Google Scholar 

  31. 31.

    Stein, C., Lowman, J. P. & Hansen, U. The influence of mantle internal heating on lithospheric mobility: implications for super-Earths. Earth. Planet. Sci. Lett. 361, 448–459 (2013).

    ADS  Article  Google Scholar 

  32. 32.

    Stamenković, V. & Breuer, D. The tectonic mode of rocky planets: Part 1–driving factors, models & parameters. Icarus 234, 174–193 (2014).

    ADS  Article  Google Scholar 

  33. 33.

    Schubert, G., Solomatov, S., Tackley, P. J. & Turcotte, D. L. in Venus II: Geology, Geophysics, Atmosphere, and Solar Wind Environment (eds. Bougher, S. W. et al.) 1245–1288 (Univ. Arizona Press, Tucson, 1997).

  34. 34.

    Steinbach, V., Yuen, D. A. & Zhao, W. L. Instabilities from phase transitions and the timescales of mantle thermal evolution. Geophys. Res. Lett. 20, 1119–1122 (1993).

    ADS  Article  Google Scholar 

  35. 35.

    Noack, L., Breuer, D. & Spohn, T. Coupling the atmosphere with interior dynamics: Implications for the resurfacing of Venus. Icarus 217,484–498 (2012).

    ADS  Article  Google Scholar 

  36. 36.

    Moore, W. B. & Webb, A. A. G. Heat-pipe Earth. Nature 501, 501–505 (2013).

    ADS  Article  Google Scholar 

  37. 37.

    Glassmeier, K.-H. et al. Electromagnetic induction effects and dynamo action in the Hermean system. Space. Sci. Rev. 132, 511–527 (2007).

    ADS  Article  Google Scholar 

  38. 38.

    Yanagisawa, M. Can electromagnetic induction current heat Io’s interior effectively? Lunar Planet. Sci. Conf. 11, 1288–1290 (1980).

  39. 39.

    Peale, S. J., Cassen, P. & Reynolds, R. T. Melting of Io by tidal dissipation. Science 203, 892–894 (1979).

    ADS  Article  Google Scholar 

  40. 40.

    Anglada-Escudé, G. et al. A terrestrial planet candidate in a temperate orbit around Proxima Centauri. Nature 536, 437–440 (2016).

    ADS  Article  Google Scholar 

  41. 41.

    Reiners, A. & Basri, G. The moderate magnetic field of the flare star Proxima Centauri. Astron. Astrophys. 489, L45–L48 (2008).

    ADS  Article  Google Scholar 

  42. 42.

    Campbell, I. H., Czamanske, G. K., Fedorenko, V. A., Hill, R. I. & Stepanov, V. synchronism of the siberian traps and the permian-triassic boundary. Science 258, 1760–1763 (1992).

    ADS  Article  Google Scholar 

  43. 43.

    Renne, P. R. & Basu, A. R. Rapid eruption of the siberian traps flood basalts at the permo-triassic boundary. Science 253, 176–179 (1991).

    ADS  Article  Google Scholar 

  44. 44.

    Black, B. A., Elkins-Tanton, L. T., Rowe, M. C. & Peate, I. U. Magnitude and consequences of volatile release from the Siberian Traps. Earth. Planet. Sci. Lett. 317, 363–373 (2012).

    ADS  Article  Google Scholar 

  45. 45.

    Black, B. A., Lamarque, J., Shields, C. A., Elkins-Tanton, L. T. & Kiehl, J. T. Acid rain and ozone depletion from pulsed Siberian Traps magmatism. Geology 42, 67–70 (2013).

    Article  Google Scholar 

  46. 46.

    McEwen, A. S. et al. High-temperature silicate volcanism on Jupiter’s moon Io. Science 281, 87 (1998).

    ADS  Article  Google Scholar 

  47. 47.

    Alberti, T., Carbone, V., Lepreti, F. & Vecchio, A. Comparative climates of TRAPPIST-1 planetary system: results from a simple climate–vegetation model. Astrophys. J. 844, 19 (2017).

  48. 48.

    Wolf, E. T. Assessing the habitability of the TRAPPIST-1 system using a 3D climate model. Astrophys. J. 839, L1 (2017).

    ADS  Article  Google Scholar 

  49. 49.

    Ferré, E. C. et al. Eight good reasons why the uppermost mantle could be magnetic. Tectonophysics 624, 3–14 (2014).

    ADS  Article  Google Scholar 

  50. 50.

    Belley, F. et al. The magnetic properties of natural and synthetic (Fe x , Mg1–x )2SiO4 olivines. Earth Planet. Sci. Lett. 284, 516–526 (2009).

    ADS  Article  Google Scholar 

  51. 51.

    Nagata, T., Yukutake, T. & Uyeda, S. On magnetic susceptibility of olivines.J. Geomagn. Geoelectr. 9, 51–56 (1957).

    ADS  Article  Google Scholar 

  52. 52.

    Srivastava, S. P. Theory of the magnetotelluric method for a spherical conductor. Geophys. J. 11, 373–387 (1966).

    ADS  Article  Google Scholar 

  53. 53.

    Winn, J. N. & Fabrycky, D. C. The occurrence and architecture of exoplanetary systems. Annu. Rev. Astron. Astrophys. 53, 409–447 (2015).

    ADS  Article  Google Scholar 

  54. 54.

    Lang, P., Jardine, M., Donati, J.-F., Morin, J. & Vidotto, A. Coronal structure of low-mass stars. Mon. Not. R. Astron. Soc. 424, 1077–1087 (2012).

    ADS  Article  Google Scholar 

  55. 55.

    Altschuler, M. D. & Newkirk, G. Magnetic fields and the structure of the solar corona. I: methods of calculating coronal fields. Solar. Phys. 9, 131–149 (1969).

    ADS  Article  Google Scholar 

  56. 56.

    Mackay, D. H., Priest, E. R. & Lockwood, M. The evolution of the Sun’s open magnetic flux—II. Full solar cycle simulations. Solar. Phys. 209, 287–309 (2002).

    ADS  Article  Google Scholar 

  57. 57.

    Jardine, M., Collier Cameron, A. & Donati, J.-F. The global magnetic topology of AB Doradus. Mon. Not. R. Astron. Soc. 333, 339–346 (2002).

    ADS  Article  Google Scholar 

  58. 58.

    Gregory, S. G. & Donati, J.-F. Analytic and numerical models of the 3D multipolar magnetospheres of pre-main sequence stars. Astron. Nachr. 332, 1027 (2011).

    ADS  Article  Google Scholar 

  59. 59.

    Johnstone, C. P. Magnetic Fields and X-ray Emission in Pre-Main Sequence Stars. PhD thesis, Univ. St Andrews (2012).

  60. 60.

    Karato, S. & Wu, P. Rheology of the upper mantle: a synthesis. Science 260, 771–778 (1993).

    ADS  Article  Google Scholar 

  61. 61.

    Lammer, H. Origin and Evolution of Planetary Atmospheres(Springer, Heidelberg, 2013).

  62. 62.

    Terada, N. et al. Atmosphere and water loss from early Mars under extreme solar wind and extreme ultraviolet conditions. Astrobiology 9, 55–70 (2009).

    ADS  Article  Google Scholar 

  63. 63.

    Paschmann, G., Haaland, S. & Treumann, R. Auroral plasma physics.Space Sci. Rev. 103, 44 (2002).

  64. 64.

    Wang, S., Wu, D.-H., Barclay, T. & Laughlin, G. P. Updated masses for the TRAPPIST-1 planets. Preprint at https://arxiv.org/abs/1704.04290 (2017).

Download references

Acknowledgements

We acknowledge support by the Austrian Fonds zur Förderung der Wissenschaftlichen Forschung Nationales Forschungs Netzwerk (FWF NFN) project S116-N16 and the subprojects S11607-N16, S11604-N16 and S11606-N16. L.N. was funded by the Interuniversity Attraction Poles Programme initiated by the Belgian Science Policy Office through the Planet Topers alliance. L.N. and M.G. acknowledge support of the COST Action TD 1308. P.O. acknowledges FWF project P27256-N27. V.V.Z. acknowledges RSF project 16-12-10528. The authors acknowledge ISSI for the support of the ISSI team “The early evolution of the atmospheres of Earth, Venus, and Mars”. M.L.K. also acknowledges the FWF projects I2939-N27, P25587-N27, P25640-N27, Leverhulme Trust grant IN-2014-016 and grant no. 16-52-14006 of the Russian Foundation for Basic Research.

Author information

Affiliations

Authors

Contributions

K.G.K. calculated the induction heating. L.N. modelled the mantle effects. C.P.J. calculated stellar magnetic fields at a given orbital distance. V.V.Z. helped to derive the equations. L.F. suggested that induction heating could be substantial. H.L. provided knowledge on the habitability of exoplanets. M.L.K. checked the influence of the ionosphere. P.O. helped to write the paper. M.G. contributed expertise in exoplanetary research. All authors contributed to the text.

Corresponding author

Correspondence to K. G. Kislyakova.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kislyakova, K.G., Noack, L., Johnstone, C.P. et al. Magma oceans and enhanced volcanism on TRAPPIST-1 planets due to induction heating. Nat Astron 1, 878–885 (2017). https://doi.org/10.1038/s41550-017-0284-0

Download citation

Further reading