Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Optical pulsations from a transitional millisecond pulsar


Millisecond pulsars are neutron stars that attain their very fast rotation during a 108–109-yr-long phase of disk accretion of matter from a low-mass companion star1,2. They can be detected as accretion-powered millisecond X-ray pulsars if towards the end of this phase their magnetic field is strong enough to channel the in-flowing matter towards their magnetic poles3. When mass transfer is reduced or ceases altogether, pulsed emission generated by magnetospheric particle acceleration and powered by the star rotation is observed, preferentially in the radio4 and gamma-ray5 bands. A few transitional millisecond pulsars that swing between an accretion-powered X-ray pulsar regime and a rotationally powered radio pulsar regime in response to variations of the mass in-flow rate have been recently identified6,7. Here, we report the detection of optical pulsations from a transitional millisecond pulsar. The pulsations were observed when the pulsar was surrounded by an accretion disk, and originated inside the magnetosphere or within a few hundreds of kilometres from it. Energy arguments rule out reprocessing of accretion-powered X-ray emission and argue against a process related to accretion onto the pulsar polar caps; synchrotron emission of electrons in a rotation-powered pulsar magnetosphere8 seems more likely.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Coherent optical pulsations of PSR J1023+0038.
Fig. 2: Variability of the coherent optical pulsed amplitude of PSR J1023+0038.
Fig. 3: Optical efficiency of rotation-powered pulsars, \({\eta }_{{\rm{o}}{\rm{p}}{\rm{t}}}={L}_{opt}\,/\,{\dot{E}}_{sd}\) as a function of the pulsar spin down power, \({\dot{{E}}}_{sd}\).


  1. 1.

    Alpar, M. A., Cheng, A. F., Ruderman, M. A. & Shaham, J. A new class of radio pulsars. Nature 300, 728–730 (1982).

    ADS  Article  Google Scholar 

  2. 2.

    Radhakrishnan, V. & Srinivasan, G. On the origin of the recently discovered ultra-rapid pulsar. Curr. Sci. India 51, 1096–1099 (1982).

    ADS  Google Scholar 

  3. 3.

    Wijnands, R. & van der Klis, M. A millisecond pulsar in an X-ray binary system. Nature 394, 344–346 (1998).

    ADS  Article  Google Scholar 

  4. 4.

    Backer, D. C., Kulkarni, S. R., Heiles, C., Davis, M. M. & Goss, W. M. A millisecond pulsar. Nature 300, 615–618 (1982).

    ADS  Article  Google Scholar 

  5. 5.

    Abdo, A. A. et al. A population of gamma-ray millisecond pulsars seen with the Fermi Large Area Telescope. Science 325, 848–852 (2009).

    ADS  Article  Google Scholar 

  6. 6.

    Archibald, A. M. et al. A radio pulsar/X-ray binary link. Science 324, 1411–1414 (2009).

    ADS  Article  Google Scholar 

  7. 7.

    Papitto, A. et al. Swings between rotation and accretion power in a binary millisecond pulsar. Nature 501, 517–520 (2013).

    ADS  Article  Google Scholar 

  8. 8.

    Cocke, W. J., Disney, M. J. & Taylor, D. J. Discovery of optical signals from pulsar NP 0532. Nature 221, 525–527 (1969).

    ADS  Article  Google Scholar 

  9. 9.

    Deller, A. T. et al. A parallax distance and mass estimate for the transitional millisecond pulsar system J1023+0038. Astrophys. J. Lett. 756, L25 (2012).

    ADS  Article  Google Scholar 

  10. 10.

    Stappers, B. W. et al. A state change in the missing link binary pulsar system PSR J1023+0038. Astrophys. J. 790, 39 (2014).

    ADS  Article  Google Scholar 

  11. 11.

    Patruno, A. et al. A new accretion disk around the missing link binary system PSR J1023+0038. Astrophys. J. Lett. 781, L3 (2014).

    ADS  Article  Google Scholar 

  12. 12.

    Tendulkar, S. P. et al. NuSTAR observations of the state transition of millisecond pulsar binary PSR J1023+0038. Astrophys. J. 791, 77 (2014).

    ADS  Article  Google Scholar 

  13. 13.

    Archibald, A. M. et al. Accretion-powered pulsations in an apparently quiescent neutron star binary. Astrophys. J. 807, 62 (2015).

    ADS  Article  Google Scholar 

  14. 14.

    Bogdanov, S. et al. Coordinated X-ray, ultraviolet, optical, and radio observations of the PSR J1023+0038 system in a low-mass X-ray binary state. Astrophys. J. 806, 148 (2015).

    ADS  Article  Google Scholar 

  15. 15.

    Papitto, A. & Torres, D. F. A propeller model for the sub-luminous state of the transitional millisecond pulsar PSR J1023+0038. Astrophys. J. 807, 33 (2015).

    ADS  Article  Google Scholar 

  16. 16.

    Deller, A. T. et al. Radio imaging observations of PSR J1023+0038 in an LMXB state. Astrophys. J. 809, 13 (2015).

    ADS  Article  Google Scholar 

  17. 17.

    Takata, J. et al. Multi-wavelength emissions from the millisecond pulsar binary PSR J1023+0038 during an accretion active state. Astrophys. J. 785, 131 (2014).

    ADS  Article  Google Scholar 

  18. 18.

    Coti Zelati, F. et al. Engulfing a radio pulsar: the case of PSR J1023+0038. Mon. Not. R. Astron. Soc. 444, 1783–1792 (2014).

    ADS  Article  Google Scholar 

  19. 19.

    Shahbaz, T. et al. The binary millisecond pulsar PSR J1023+0038 during its accretion state—I. Optical variability. Mon. Not. R. Astron. Soc. 453, 3461–3473 (2015).

    ADS  Article  Google Scholar 

  20. 20.

    Jaodand, A. et al. Timing observations of PSR J1023+0038 during a low-mass X-ray binary state. Astrophys. J. 830, 122 (2016).

    ADS  Article  Google Scholar 

  21. 21.

    Davidsen, A., Henry, J. P., Middleditch, J. & Smith, H. E. Identification of the X-ray pulsar in Hercules: a new optical pulsar. Astrophys. J. Lett. 177, L97–L102 (1972).

    ADS  Article  Google Scholar 

  22. 22.

    Papitto, A. et al. X-ray coherent pulsations during a sub-luminous accretion disc state of the transitional millisecond pulsar XSS J12270-4859. Mon. Not. R. Astron. Soc. 449, L26–L30 (2015).

    ADS  Article  Google Scholar 

  23. 23.

    Gierliński, M., Done, C. & Barret, D. Phase-resolved X-ray spectroscopy of the millisecond pulsar SAX J1808.4-3658. Mon. Not. R. Astron. Soc. 331, 141–153 (2002).

    ADS  Article  Google Scholar 

  24. 24.

    Frank, J., King, A. & Raine, D. J. Accretion Power in Astrophysics 3rd edn (Cambridge Univ. Press, Cambridge, 2002).

  25. 25.

    Romanova, M. M., Ustyugova, G. V., Koldoba, A. V. & Lovelace, R. V. E. Three-dimensional simulations of disk accretion to an inclined dipole. II. Hot spots and variability. Astrophys. J. 610, 920–932 (2004).

    ADS  Article  Google Scholar 

  26. 26.

    Pacini, F. & Salvati, M. The optical luminosity of very fast pulsars. Astrophys. J. 274, 369–371 (1983).

    ADS  Article  Google Scholar 

  27. 27.

    Romani, R. W. Gamma-ray pulsars: radiation processes in the outer magnetosphere. Astrophys. J. 470, 469 (1996).

    ADS  Article  Google Scholar 

  28. 28.

    Mignani, R. P. Optical, ultraviolet, and infrared observations of isolated neutron stars. Adv. Space. Res. 47, 1281–1293 (2011).

    ADS  Article  Google Scholar 

  29. 29.

    Strader, M. J. et al. Search for optical pulsations in PSR J0337+1715. Mon. Not. R. Astron. Soc. 459, 427–430 (2016).

    ADS  Article  Google Scholar 

  30. 30.

    Rangelov, B. et al. Hubble Space Telescope detection of the millisecond pulsar J2124-3358 and its far-ultraviolet bow shock nebula. Astrophys. J. 835, 264 (2017).

    ADS  Article  Google Scholar 

  31. 31.

    Mignani, R. P., Pavlov, G. G. & Kargaltsev, O. A possible optical counterpart to the old nearby pulsar J0108-1431. Astron. Astrophys. 488, 1027–1030 (2008).

    ADS  Article  Google Scholar 

  32. 32.

    Papitto, A., Torres, D. F. & Li, J. A propeller scenario for the gamma-ray emission of low-mass X-ray binaries: the case of XSS J12270-4859. Mon. Not. R. Astron. Soc. 438, 2105–2116 (2014).

    ADS  Article  Google Scholar 

  33. 33.

    Barbieri, C. et al. Status of the Galileo National Telescope. In Proc. SPIE Vol. 2199 (ed. Stepp, L. M.) 10–21 (SPIE, 1994).

  34. 34.

    Zappacosta, L. et al. Constraining the thermal history of the warm-hot intergalactic medium. Astron. Astrophys. 434, 801–809 (2005).

    ADS  Article  Google Scholar 

  35. 35.

    Meddi, F. et al. A new fast silicon photomultiplier photometer. Publ. Astron. Soc. Pac. 124, 448–453 (2012).

    ADS  Article  Google Scholar 

  36. 36.

    Ambrosino, F. et al. The latest version of SiFAP: beyond microsecond time scale photometry of variable objects. J. Astron. Instrum. 5, 16500051267 (2016).

    Article  Google Scholar 

  37. 37.

    Leahy, D. A., Elsner, R. F. & Weisskopf, M. C. On searches for periodic pulsed emission—the Rayleigh test compared to epoch folding. Astrophys. J. 272, 256–258 (1983).

    ADS  Article  Google Scholar 

  38. 38.

    Leahy, D. A. Searches for pulsed emission—improved determination of period and amplitude from epoch folding for sinusoidal signals. Astron. Astrophys. 180, 275–277 (1987).

    ADS  Google Scholar 

  39. 39.

    Deeter, J. E., Boynton, P. E. & Pravdo, S. H. Pulse-timing observations of Hercules X-1. Astrophys. J. 247, 1003–1012 (1981).

    ADS  Article  Google Scholar 

  40. 40.

    Papitto, A. et al. Spin down during quiescence of the fastest known accretion-powered pulsar. Astron. Astrophys. 528, A55 (2011).

    Article  Google Scholar 

  41. 41.

    Gehrels, N. et al. The Swift Gamma-Ray Burst Mission. Astrophys. J. 611, 1005–1020 (2004).

    ADS  Article  Google Scholar 

  42. 42.

    Burrows, D. N. et al. The Swift X-Ray Telescope. Space. Sci. Rev. 120, 165–195 (2005).

    ADS  Article  Google Scholar 

  43. 43.

    Roming, P. W. A. et al. The Swift Ultra-Violet/Optical Telescope. Space. Sci. Rev. 120, 95–142 (2005).

    ADS  Article  Google Scholar 

  44. 44.

    Manchester, R. N., Hobbs, G. B., Teoh, A. & Hobbs, M. The Australia Telescope National Facility pulsar catalogue. Astron. J. 129, 1993–2006 (2005).

    ADS  Article  Google Scholar 

Download references


F.A., P.C. and F.M. acknowledge the research project Protocol C26A15YCJ4 funded by the Department of Physics of the University of Rome (La Sapienza), for the financial support. A.P. acknowledges funding from the European Union’s Horizon 2020 Framework Programme for Research and Innovation under the Marie Skłodowska-Curie Individual Fellowship grant agreement 660657-TMSP-H2020-MSCA-IF-2014, and wishes to thank D. de Martino, N. Rea and D. F. Torres for useful discussions. L.B., T.D.S. and A.P. acknowledge fruitful discussion with the international team on ‘The disk–magnetosphere interaction around transitional millisecond pulsars at the International Space Science Institute (ISSI), Bern. L.B., T.D.S., G.L.I. and L.S. acknowledge financial contribution from the agreement ASI-INAF I/037/12/0. Results obtained and presented in this paper are based on observations made with the Italian Telescopio Nazionale Galileo (TNG) operated on the island of La Palma by the Fundación Galileo Galilei of the INAF (Istituto Nazionale di Astrofisica) at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias. The authors gratefully acknowledge time Discretionary Observing Time granted by the TNG Director, E. Molinari and thank C. Rossi for her scientific support and contribution.

Author information




F.A. and A.P. jointly coordinated and contributed equally to this study. F.M., F.A. and P.C. conceived and designed the optical photometer. F.A., A.G., L.D.F. and L.R. performed the optical observations. A.P. and F.A. analysed the data. A.P. and L.S. wrote the paper. A.P., L.S., T.D.S. and L.B. interpreted the results. All authors read, commented on and approved submission of this article.

Corresponding author

Correspondence to A. Papitto.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary Information

Supplementary Figures 1–4, Supplementary Tables 1–2 and Supplementary References

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ambrosino, F., Papitto, A., Stella, L. et al. Optical pulsations from a transitional millisecond pulsar. Nat Astron 1, 854–858 (2017).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing