No hot and luminous progenitor for Tycho’s supernova

Published online:


Type Ia supernovae have proven vital to our understanding of cosmology, both as standard candles and for their role in galactic chemical evolution; however, their origin remains uncertain. The canonical accretion model implies a hot and luminous progenitor that would ionize the surrounding gas out to a radius of ~10–100 pc for ~100,000 years after the explosion. Here, we report stringent upper limits on the temperature and luminosity of the progenitor of Tycho’s supernova (SN 1572), determined using the remnant itself as a probe of its environment. Hot, luminous progenitors that would have produced a greater hydrogen ionization fraction than that measured at the radius of the present remnant (~3 pc) can thus be excluded. This conclusively rules out steadily nuclear-burning white dwarfs (supersoft X-ray sources), as well as disk emission from a Chandrasekhar-mass white dwarf accreting approximately greater than 10−8M yr−1 (recurrent novae; M is equal to one solar mass). The lack of a surrounding Strömgren sphere is consistent with the merger of a double white dwarf binary, although other more exotic scenarios may be possible.

  • Subscribe to Nature Astronomy for full access:



Additional access options:

Already a subscriber?  Log in  now or  Register  for online access.


  1. 1.

    Ruiz-Lapuente, P. Tycho Brahe’s supernova: light from centuries past. Astrophys. J. 612, 357–363 (2004).

  2. 2.

    Badenes, C., Borkowski, K. J., Hughes, J. P., Hwang, U. & Bravo, E. Constraints on the physics of type Ia supernovae from the X-ray spectrum of the Tycho supernova remnant. Astrophys. J. 645, 1373–1391 (2006).

  3. 3.

    Krause, O. et al. Tycho Brahe’s 1572 supernova as a standard type Ia as revealed by its light echo spectrum. Nature 456, 617–619 (2008).

  4. 4.

    Whelan, J. & Iben, I. Jr Binaries and supernovae of type I. Astrophys. J. 186, 1007–1014 (1973).

  5. 5.

    Webbink, R. F. Double white dwarfs as progenitors of R Coronae Borealis stars and type I supernovae. Astrophys. J. 277, 355–360 (1984).

  6. 6.

    Ruiz-Lapuente, P. et al. The binary progenitor of Tycho Brahe’s 1572 supernova. Nature 431, 1069–1072 (2004).

  7. 7.

    Zhou, P. et al. Expanding molecular bubble surrounding Tycho’s supernova remnant (SN 1572) observed with the IRAM 30 m Telescope: evidence for a single-degenerate progenitor. Astrophys. J. 826, 34 (2016).

  8. 8.

    Kerzendorf, W. E. et al. Subaru high-resolution spectroscopy of Star G in the Tycho supernova remnant. Astrophys. J. 701, 1665–1672 (2009).

  9. 9.

    Maoz, D., Mannucci, F. & Nelemans, G. Observational clues to the progenitors of type Ia supernovae. Annu. Rev. Astron. Astr. 52, 107–170 (2014).

  10. 10.

    Bedin, L. R. et al. Improved Hubble Space Telescope proper motions for Tycho-G and other stars in the remnant of Tycho’s supernova 1572. Mon. Not. R. Astron. Soc. 439, 354–371 (2014).

  11. 11.

    Williams, B. J. et al. An X-ray and radio study of the varying expansion velocities in Tycho’s supernova remnant. Astrophys. J. 823, L32 (2016).

  12. 12.

    González Hernández, J. I. et al. The chemical abundances of Tycho G in supernova remnant 1572. Astrophys. J. 691, 1–15 (2009).

  13. 13.

    Kerzendorf, W. E. et al. A high-resolution spectroscopic search for the remaining donor for Tycho’s supernova. Astrophys. J. 774, 99 (2013).

  14. 14.

    Nielsen, M. T. B., Voss, R. & Nelemans, G. Upper limits on bolometric luminosities of 10 type Ia supernova progenitors from Chandra observations. Mon. Not. R. Astron. Soc. 426, 2668–2676 (2012).

  15. 15.

    Graham, M. L. et al. Constraining the progenitor companion of the nearby type Ia SN 2011fe with a nebular spectrum at +981 d. Mon. Not. R. Astron. Soc. 454, 1948–1957 (2015).

  16. 16.

    Olling, R. P. et al. No signature of ejecta interaction with a stellar companion in three type Ia supernovae. Nature 521, 332–335 (2015).

  17. 17.

    Gilfanov, M. & Bogdán, Á. An upper limit on the contribution of accreting white dwarfs to the type Ia supernova rate. Nature 463, 924–925 (2010).

  18. 18.

    Di Stefano, R. The progenitors of type Ia supernovae. I. Are they supersoft sources? Astrophys. J. 712, 728–733 (2010).

  19. 19.

    Woods, T. E. & Gilfanov, M. He II recombination lines as a test of the nature of SN Ia progenitors in elliptical galaxies. Mon. Not. R. Astron. Soc. 432, 1640–1650 (2013).

  20. 20.

    Johansson, J. et al. Diffuse gas in retired galaxies: nebular emission templates and constraints on the sources of ionization. Mon. Not. R. Astron. Soc. 461, 4505–4516 (2016).

  21. 21.

    Rappaport, S., Chiang, E., Kallman, T. & Malina, R. Ionization nebulae surrounding supersoft X-ray sources. Astrophys. J. 431, 237–246 (1994).

  22. 22.

    Woods, T. E. & Gilfanov, M. Where are all of the nebulae ionized by supersoft X-ray sources? Mon. Not. R. Astron. Soc. 455, 1770–1781 (2016).

  23. 23.

    Prialnik, D. & Kovetz, A. An extended grid of multicycle nova evolution models. Astrophys. J. 445, 789–810 (1995).

  24. 24.

    Nomoto, K., Saio, H., Kato, M. & Hachisu, I. Thermal stability of white dwarfs accreting hydrogen-rich matter and progenitors of type Ia supernovae. Astrophys. J. 663, 1269–1276 (2007).

  25. 25.

    Wolf, W. M., Bildsten, L., Brooks, J. & Paxton, B. Hydrogen burning on accreting white dwarfs: stability, recurrent novae, and the post-nova supersoft phase. Astrophys. J. 777, 136 (2013).

  26. 26.

    Thoroughgood, T. D., Dhillon, V. S., Littlefair, S. P., Marsh, T. R. & Smith, D. A. The mass of the white dwarf in the recurrent nova U Scorpii. Mon. Not. R. Astron. Soc. 327, 1323–1333 (2001).

  27. 27.

    Darnley, M. J. et al. A remarkable recurrent nova in M31: discovery and optical/UV observations of the predicted 2014 eruption. Astron. Astrophys. 580, A45 (2015).

  28. 28.

    Shakura, N. I. & Sunyaev, R. A. Black holes in binary systems. Observational appearance. Astron. Astrophys. 24, 337–355 (1973).

  29. 29.

    Bisnovatyi-Kogan, G. S. & Syunyaev, R. A. The evolution of massive stars and Strömgren zones. Sov. Astron. 47, 441–442 (1970).

  30. 30.

    Graur, O., Maoz, D. & Shara, M. M. Progenitor constraints on the type-Ia supernova SN2011fe from pre-explosion Hubble Space Telescope He II narrow-band observations. Mon. Not. R. Astron. Soc. 442, L28–L32 (2014).

  31. 31.

    Chevalier, R. A., Kirshner, R. P. & Raymond, J. C. The optical emission from a fast shock wave with application to supernova remnants. Astrophys. J. 235, 186–195 (1980).

  32. 32.

    Ghavamian, P., Raymond, J., Hartigan, P. & Blair, W. P. Evidence for shock precursors in Tycho’s supernova remnant. Astrophys. J. 535, 266–274 (2000).

  33. 33.

    Ghavamian, P., Raymond, J., Smith, R. C. & Hartigan, P. Balmer-dominated spectra of nonradiative shocks in the Cygnus Loop, RCW 86, and Tycho supernova remnants. Astrophys. J. 547, 995–1009 (2001).

  34. 34.

    Chevalier, R. A. & Raymond, J. C. Optical emission from a fast shock wave—the remnants of Tycho’s supernova and SN 1006. Astrophys. J. 225, L27–L30 (1978).

  35. 35.

    Ghavamian, P., Rakowski, C. E., Hughes, J. P. & Williams, T. B. The physics of supernova blast waves. I. Kinematics of DEM L71 in the Large Magellanic Cloud. Astrophys. J. 590, 833–845 (2003).

  36. 36.

    Vink, J. Supernova remnants: the X-ray perspective. Astron. Astrophys. Rev 20, 49 (2012).

  37. 37.

    Yamaguchi, H. et al. Discriminating the progenitor type of supernova remnants with iron K-shell emission. Astrophys. J. 785, L27 (2014).

  38. 38.

    Badenes, C., Hughes, J. P., Bravo, E. & Langer, N. Are the models for type Ia supernova progenitors consistent with the properties of supernova remnants? Astrophys. J. 662, 472–486 (2007).

  39. 39.

    Patnaude, D. & Badenes, C. in Handbook of Supernovae (eds Alsabti, A. W. & Murdin, P.) 1–17 (Springer International Publishing, Cham, 2017).

  40. 40.

    Williams, B. J. et al. Azimuthal density variations around the rim of Tycho’s supernova remnant. Astrophys. J. 770, 129 (2013).

  41. 41.

    Chiang, E. & Rappaport, S. Time-dependent calculations of ionization nebulae surrounding supersoft X-ray sources. Astrophys. J. 469, 255 (1996).

  42. 42.

    Greiner, J. Catalog of supersoft X-ray sources. New Astron. 5, 137–141 (2000).

  43. 43.

    Hachisu, I., Kato, M. & Nomoto, K. A new model for progenitor systems of type IA supernovae. Astrophys. J. 470, L97 (1996).

  44. 44.

    Nielsen, M. T. B. & Gilfanov, M. Attenuation of supersoft X-ray sources by circumstellar material. Mon. Not. R. Astron. Soc. 453, 2927–2936 (2015).

  45. 45.

    Cumming, R. J., Lundqvist, P., Smith, L. J., Pettini, M. & King, D. L. Circumstellar Hα from SN 1994D and future type IA supernovae: an observational test of progenitor models. Mon. Not. R. Astron. Soc. 283, 1355–1360 (1996).

  46. 46.

    Pérez-Torres, M. A. et al. Constraints on the progenitor system and the environs of SN 2014J from deep radio observations. Astrophys. J. 792, 38 (2014).

  47. 47.

    Chomiuk, L. et al. A deep search for prompt radio emission from thermonuclear supernovae with the Very Large Array. Astrophys. J. 821, 119 (2016).

  48. 48.

    Margutti, R. et al. Inverse Compton X-ray emission from supernovae with compact progenitors: application to SN2011fe. Astrophys. J. 751, 134 (2012).

  49. 49.

    Margutti, R. et al. No X-rays from the very nearby type Ia SN 2014J: constraints on Its environment. Astrophys. J. 790, 52 (2014).

  50. 50.

    Kundu, E., Lundqvist, P., Pérez-Torres, M. A., Herrero-Illana, R. & Alberdi, A. Constraining magnetic field amplification in SN shocks using radio observations of SNe 2011fe and 2014J. Astrophys. J. 842, 17 (2017).

  51. 51.

    Yaron, O., Prialnik, D., Shara, M. M. & Kovetz, A. An extended grid of nova models. II. The parameter space of nova outbursts. Astrophys. J. 623, 398–410 (2005).

  52. 52.

    Denissenkov, P. A. et al. i-process nucleosynthesis and mass retention efficiency in He-shell flash evolution of rapidly accreting white dwarfs. Astrophys. J. 834, L10 (2017).

  53. 53.

    Pakmor, R., Kromer, M., Taubenberger, S. & Springel, V. Helium-ignited violent mergers as a unified model for normal and rapidly declining type Ia supernovae. Astrophys. J. 770, L8 (2013).

  54. 54.

    Bulla, M. et al. Type Ia supernovae from violent mergers of carbon-oxygen white dwarfs: polarization signatures. Mon. Not. R. Astron. Soc. 455, 1060–1070 (2016).

  55. 55.

    Williams, B. J. et al. The three-dimensional expansion of the ejecta from Tycho’s supernova remnant. Astrophys. J. 842, 28 (2017).

  56. 56.

    Shen, K. J., Bildsten, L., Kasen, D. & Quataert, E. The long-term evolution of double white dwarf mergers. Astrophys. J. 748, 35 (2012).

  57. 57.

    Schwab, J., Quataert, E. & Kasen, D. The evolution and fate of super-Chandrasekhar mass white dwarf merger remnants. Mon. Not. R. Astron. Soc. 463, 3461–3475 (2016).

  58. 58.

    Justham, S. Single-degenerate type Ia supernovae without hydrogen contamination. Astrophys. J. 730, L34 (2011).

  59. 59.

    Di Stefano, R., Voss, R. & Claeys, J. S. W. Spin-up/spin-down models for type Ia supernovae. Astrophys. J. 738, L1 (2011).

  60. 60.

    Benvenuto, O. G., Panei, J. A., Nomoto, K., Kitamura, H. & Hachisu, I. Final evolution and delayed explosions of spinning white dwarfs in single degenerate models for type Ia supernovae. Astrophys. J. 809, L6 (2015).

  61. 61.

    Ferland, G. J. et al. The 2013 release of Cloudy. Rev. Mex. Astron. Astr. 49, 137–163 (2013).

  62. 62.

    Badnell, N. R. et al. Dielectronic recombination data for dynamic finite-density plasmas. I. Goals and methodology. Astron. Astrophys. 406, 1151–1165 (2003).

  63. 63.

    Badnell, N. R. Radiative recombination data for modeling dynamic finite-density plasmas. Astrophys. J. Suppl. Ser. 167, 334–342 (2006).

  64. 64.

    Dere, K. P., Landi, E., Mason, H. E., Monsignori Fossi, B. C. & Young, P. R. CHIANTI—an atomic database for emission lines. Astron. Astrophys. Suppl. Ser. 125 149–173 (1997).

  65. 65.

    Landi, E., Del Zanna, G., Young, P. R., Dere, K. P. & Mason, H. E. CHIANTI—an atomic database for emission lines. XII. Version 7 of the database. Astrophys. J. 744, 99 (2012).

  66. 66.

    Grevesse, N. & Sauval, A. J. Standard solar composition. Space Sci. Rev. 85, 161–174 (1998).

  67. 67.

    Allende Prieto, C., Lambert, D. L. & Asplund, M. The forbidden abundance of oxygen in the Sun. Astrophys. J. 556, L63–L66 (2001).

  68. 68.

    Allende Prieto, C., Lambert, D. L. & Asplund, M. A reappraisal of the solar photospheric C/O ratio. Astrophys. J. 573, L137–L140 (2002).

  69. 69.

    Holweger, H. Photospheric abundances: problems, updates, implications. In Solar and Galactic Composition (ed. Wimmer-Schweingruber, R. F.) 23–30 (AIP Conf. Proc. Vol. 598, American Institute of Physics, Melville, 2001).

  70. 70.

    Woods, T. E. & Gilfanov, M. Emission-line diagnostics to constrain high-temperature populations in early-type galaxies. Mon. Not. R. Astron. Soc. 439, 2351–2363 (2014).

  71. 71.

    Zimmerman, E. R., Narayan, R., McClintock, J. E. & Miller, J. M. Multitemperature blackbody spectra of thin accretion disks with and without a zero-torque inner boundary condition. Astrophys. J. 618, 832–844 (2005).

  72. 72.

    Arnaud, K. A. XSPEC: the first ten years. In Astronomical Data Analysis Software and Systems V (eds Jacoby, G. H. & Barnes, J.) 17–20 (ASP Conf. Ser. Vol. 101, Astronomical Society of the Pacific, San Francisco, 1996).

  73. 73.

    Panei, J. A., Althaus, L. G. & Benvenuto, O. G. Mass-radius relations for white dwarf stars of different internal compositions. Astron. Astrophys. 353, 970–977 (2000).

  74. 74.

    Starrfield, S. et al. Surface hydrogen-burning modeling of supersoft X-ray binaries: are they type Ia supernova progenitors? Astrophys. J. 612, L53–L56 (2004).

  75. 75.

    Ness, J.-U. et al. Obscuration effects in super-soft-source X-ray spectra. Astron. Astrophys. 559, A50 (2013).

Download references


The work of P.G. was supported by grants HST-GO-12545.08 and HST-GO-14359.011. C.B. acknowledges support from grants NASA ADAP NNX15AM03G S01 and NSF/AST-1412980. M.G. acknowledges partial support by Russian Scientific Foundation (RNF) project 14-22-00271.

Author information


  1. Monash Centre for Astrophysics, School of Physics and Astronomy, Monash University, Monash, Victoria, 3800, Australia

    • T. E. Woods
  2. Department of Physics, Astronomy and Geosciences, Towson University, Towson, MD, 21252, USA

    • P. Ghavamian
  3. Department of Physics and Astronomy and Pittsburgh Particle Physics, Astrophysics, and Cosmology Center, University of Pittsburgh, 3941 O’Hara Street, Pittsburgh, PA, 15260, USA

    • C. Badenes
  4. Max-Planck Institut für Astrophysik, Karl-Schwarzschild-Straße 1, D-85741, Garching, Germany

    • M. Gilfanov
  5. Space Research Institute, Profsoyuznaya 84/32, 117997, Moscow, Russia

    • M. Gilfanov


  1. Search for T. E. Woods in:

  2. Search for P. Ghavamian in:

  3. Search for C. Badenes in:

  4. Search for M. Gilfanov in:


T.E.W. led the cloudy simulations and analysis of their results, and was the primary author of the main text and methods. P.G. wrote the supplementary section of the paper, and wrote portions of the main manuscript summarizing the constraints on preshock conditions from the Balmer-dominated shocks. C.B. first suggested this project during the conference ‘Supernova Remnants: An Odyssey In Space After Stellar Death’ in Crete, and contributed to the text and the interpretation of the analysis. M.G. contributed to defining the simulations setup, analysis and interpretation of cloudy results and to the writing of the manuscript.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to T. E. Woods.

Electronic supplementary material

  1. Supplementary Information

    Supplementary text, supplementary references