The origin of methane and biomolecules from a CO2 cycle on terrestrial planets


Understanding the chemical evolution of newly formed terrestrial planets involves uncertainties in atmospheric chemical composition and assessing the plausibility of biomolecule synthesis. In this study, an original scenario for the origin of methane on Mars and terrestrial planets is suggested. Carbon dioxide in Martian and other planetary atmospheres can be abiotically converted into a mixture of methane and carbon monoxide by ‘methanogenesis’ on porous mineral photoactive surfaces under soft ultraviolet irradiation. On young planets exposed to heavy bombardment by interplanetary matter, this process can be followed by biomolecule synthesis through the reprocessing of reactive reducing atmospheres by impact-induced shock waves. The proposed mechanism of methanogenesis may help to answer the question concerning the formation of methane and carbon monoxide by photochemical processes, the formation of biomolecules on early Earth and other terrestrial planets, and the source and seasonal variation of methane concentrations on Mars.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Photocatalytic reduction of the sample over montmorillonite.
Fig. 2: Photocatalytic reduction of the sample over anatase.
Fig. 3: Seasonal variation of atmospheric composition on Mars.
Fig. 4: High-power laser irradiation of the sample.


  1. 1.

    Kasting, J. F. Earth’s early Atmosphere. Science 259, 920–926 (1993).

    ADS  Article  Google Scholar 

  2. 2.

    Delano, J. W. Redox history of the Earth’s interior since approximately 3900 Ma: implications for prebiotic molecules. Orig. Life Evol. Biosph. 4–5, 311–341 (2001).

    ADS  Article  Google Scholar 

  3. 3.

    Yang, X., Gaillard, F. & Scaillet, B. A relatively reduced Hadean continental crust and implications for the early atmosphere and crustal rheology. Earth Planet. Sci. Lett. 393, 210–219 (2014).

    ADS  Article  Google Scholar 

  4. 4.

    Marty, B. The origins and concentrations of water, carbon, nitrogen and noble gases on Earth. Earth Planet. Sci. Lett. 313, 56–66 (2012).

    ADS  Article  Google Scholar 

  5. 5.

    Lammer, H. et al. Origin and loss of nebula-captured hydrogen envelopes from ‘sub’- to ‘super-Earths’ in the habitable zone of Sun-like stars. Mon. Not. R. Astron. Soc. 439, 3225–3238 (2014).

    ADS  Article  Google Scholar 

  6. 6.

    de Niem, D., Kuehrt, E., Morbidelli, A. & Motschmann, U. Atmospheric erosion and replenishment induced by impacts upon the Earth and Mars during a heavy bombardment. Icarus 221, 495–507 (2012).

    ADS  Article  Google Scholar 

  7. 7.

    Sekine, Y. et al. An experimental study on Fischer-Tropsch catalysis: implications for impact phenomena and nebular chemistry. Meteorit. Planet. Sci. 41, 715–729 (2006).

    ADS  Article  Google Scholar 

  8. 8.

    Hashimoto, G. L., Abe, Y. & Sugita, S. The chemical composition of the early terrestrial atmosphere: formation of a reducing atmosphere from CI-like material. J. Geophys. Res. 112, E05010 (2007).

    ADS  Article  Google Scholar 

  9. 9.

    Schaefer, L. & Fegley, B. Jr Outgassing of ordinary chondritic material and some of its implications for the chemistry of asteroids, planets, and satellites. Icarus 186, 462–483 (2007).

    ADS  Article  Google Scholar 

  10. 10.

    Webster, C. R. et al. Mars methane detection and variability at Gale crater. Science 347, 415–417 (2015).

    ADS  Article  Google Scholar 

  11. 11.

    Sullivan, W. T. III & Baross, J. (eds) Planets and Life: The Emerging Science of Astrobiology 1st edn (Cambridge Univ. Press, New York, 2007).

  12. 12.

    Chyba, C. & Sagan, C. Endogenous production, exogenous delivery and impact-shock synthesis of organic molecules — an inventory for the origin of life. Nature 355, 125–132 (1992).

    ADS  Article  Google Scholar 

  13. 13.

    Koeberl, C. Impact processes on the early Earth. Elements 2, 211–216 (2006).

    Article  Google Scholar 

  14. 14.

    Ferus, M. et al. High-energy chemistry of formamide: a simpler way for nucleobase formation. J. Phys. Chem. 118, 719–736 (2014).

    Article  Google Scholar 

  15. 15.

    Ferus, M. et al. High-energy chemistry of formamide: a unified mechanism of nucleobase formation. Proc. Natl Acad. Sci. USA 112, 657–662 (2015).

    ADS  Article  Google Scholar 

  16. 16.

    Nair, H., Allen, M., Anbar, A. D., Yung, Y. L. & Clancy, R. T. A photochemical model of the Martian atmosphere. Icarus 111, 124–150 (1994).

    ADS  Article  Google Scholar 

  17. 17.

    Hu, R., Bloom, A. A., Gao, P., Miller, C. E. & Yung, Y. L. Hypotheses for near-surface exchange of methane on Mars. Astrobiology 16, 539–550 (2016).

    ADS  Article  Google Scholar 

  18. 18.

    Levin, G. V. & Straat, P. A. The case for extant life on Mars and its possible detection by the Viking labeled release experiment. Astrobiology 16, 798–810 (2016).

    ADS  Article  Google Scholar 

  19. 19.

    Shkrob, I. A., Chemerisov, S. D. & Marin, T. W. Photocatalytic decomposition of carboxylated molecules on light-exposed Martian regolith and its relation to methane production on Mars. Astrobiology 10, 425–436 (2010).

    ADS  Article  Google Scholar 

  20. 20.

    Civiš, S. et al. Photocatalytic transformation of CO2 to CH4 and CO on acidic surface of TiO2 anatase. Opt. Mater. (Amst) 80–83 (2016).

    ADS  Article  Google Scholar 

  21. 21.

    Shkrob, I. A., Marin, T. W., He, H. & Zapol, P. Photoredox reactions and the catalytic cycle for carbon dioxide fixation and methanogenesis on metal oxides. J. Phys. Chem. C 116, 9450–9460 (2012).

    Article  Google Scholar 

  22. 22.

    Raulin, F., McKay, C., Lunine, J. & Owen, T. in Titan from Cassini-Huygens (eds Brown, R. H., Lebreton, J. P. & Waite, J.) 215–233 (Springer, 2009).

  23. 23.

    Bell, J. F. (ed.) The Martian Surface: Composition, Mineralogy and Physical Properties (Cambridge Univ. Press, New York, 2008).

  24. 24.

    Clark, B. C. III et al. Evidence for montmorillonite or its compositional equivalent in Columbia Hills, Mars. J. Geophys. Res. 112, E06S01 (2007).

    Article  Google Scholar 

  25. 25.

    Ehlmann, B. L. & Edwards, C. S. Mineralogy of the Martian surface. Ann. Rev. Earth Planet. Sci. 42, 291–315 (2014).

  26. 26.

    Hazen, R. M. et al. Mineral evolution. Am. Mineral. 93, 1693–1720 (2008).

    ADS  Article  Google Scholar 

  27. 27.

    Catling, D. C. et al. Atmospheric origins of perchlorate on Mars and in the Atacama. J. Geophys. Res. Planets 115, E00E11 (2010).

    Article  Google Scholar 

  28. 28.

    Villanueva, G. L. et al. A sensitive search for organics (CH4, CH3OH, H2CO, C2H6, C2H2, C2H4), hydroperoxyl(HO2), nitrogen compounds (N2O, NH3, HCN) and chlorine species (HCl, CH3Cl) on Mars using ground-based high-resolution infrared spectroscopy. Icarus. 223, 11–27 (2013).

  29. 29.

    Ming, D. W. et al. Science. 343, 1245267 (2014).

  30. 30.

    Gordon, P. R. & Sephton, M. A. Organic matter detection on Mars by pyrolysis-FTIR: an analysis of sensitivity and mineral matrix effects. Astrobiology 16, 831–845 (2016).

    ADS  Article  Google Scholar 

  31. 31.

    Hecht, M. H. et al. Detection of perchlorate and the soluble chemistry of Martian soil at the Phoenix lander site. Science 325, 64–67 (2009).

    ADS  Article  Google Scholar 

  32. 32.

    Habisreutinger, S. N., Schmidt-Mende, L. & Stolarczyk, J. K. Photocatalytic reduction of CO2 on TiO2 and other semiconductors. Angew. Chem. Int. Ed. 52, 7372–7408 (2013).

    Article  Google Scholar 

  33. 33.

    Ronto, G. et al. Solar UV irradiation conditions on the surface of Mars. Photochem. Photobiol. 77, 34–40 (2003).

    Article  Google Scholar 

  34. 34.

    Schuerger, A. C., Mancinelli, R. L., Kern, R. G., Rothschild, L. J. & McKay, C. P. Survival of endospores of Bacillus subtilis on spacecraft surfaces under simulated Martian environments: implications for the forward contamination of Mars. Icarus 165, 253–276 (2003).

    ADS  Article  Google Scholar 

  35. 35.

    Chun, S. F. S., Pang, K. D., Cutts, J. A. & Ajello, J. M. Photocatalytic oxidation of organic compounds on Mars. Nature 274, 875–876 (1978).

    ADS  Article  Google Scholar 

  36. 36.

    Quinn, R. C. & Zent, A. P. Peroxide-modified titanium dioxide: a chemical analog of putative Martian soil oxidants. Orig. Life Evol. Biosph. 29, 59–72 (1999).

    ADS  Article  Google Scholar 

  37. 37.

    Wong, A. S., Atreya, S. K. & Encrenaz, T. Chemical markers of possible hot spots on Mars. J. Geophys. Res. 108, 5026 (2003).

    Article  Google Scholar 

  38. 38.

    Krasnopolsky, V. A., Maillard, J. P. & Owen, T. C. Detection of methane in the martian atmosphere: Evidence for life? Icarus 172, 537–547 (2004).

    ADS  Article  Google Scholar 

  39. 39.

    Mumma, M. J. et al. Strong release of methane on Mars in northern summer 2003. Science 323, 1041–1045 (2009).

    ADS  Article  Google Scholar 

  40. 40.

    Webster, G., Brown, D. & Cantillo, L. Second cycle of Martian seasons completing for Curiosity rover. NASA (11 May 2016).

  41. 41.

    Encrenaz, T. et al. Seasonal variations of the Martian CO over Hellas as observed by OMEGA/Mars Express. Astron. Astrophys. 459, 265–270 (2006).

    ADS  Article  Google Scholar 

  42. 42.

    Civis, S., Ferus, M., Zukalova, M., Kavan, L. & Zelinger, Z. The application of high-resolution IR spectroscopy and isotope labeling for detailed investigation of TiO2/gas interface reactions. Opt. Mater. (Amst) 36, 159–162 (2013).

    ADS  Article  Google Scholar 

  43. 43.

    Cockell, C. S. Biological effects of high ultraviolet radiation on early Earth—a theoretical evaluation. J. Theor. Biol. 193, 717–729 (1998).

  44. 44.

    Ferris, J. P., Hill, A. R. J., Liu, R. & Orgel, L. E. Synthesis of long prebiotic oligomers on mineral surfaces. Nature 381, 59–61 (1996).

    ADS  Article  Google Scholar 

  45. 45.

    Ferus, M. et al. Formation of nucleobases in a Miller-Urey reducing atmosphere. Proc. Natl Acad. Sci. USA 114, 4306–4311 (2017).

    Article  Google Scholar 

  46. 46.

    Ferus, M. et al. On the road from formamide ices to nucleobases: IR-spectroscopic observation of a direct reaction between cyano radicals and formamide in a high-energy impact event. J. Am. Chem. Soc. 134, 20788–20796 (2012).

    Article  Google Scholar 

  47. 47.

    Civis, M. et al. Spectroscopic investigations of high-density-energy plasma transformations in a simulated early reducing atmosphere containing methane, nitrogen and water. Phys. Chem. Chem. Phys. 18, 27317–27325 (2016).

    Article  Google Scholar 

  48. 48.

    Civis, S., Ferus, M., Kubelik, P., Chernov, V. E. & Zanozina, E. M. Li I spectra in the 4.65-8.33 micron range: high-L states and oscillator strengths. Astron. Astrophys. 545, A61 (2012).

    ADS  Article  Google Scholar 

  49. 49.

    Ferus, M. et al. High energy radical chemistry formation of HCN-rich atmospheres on early Earth. Sci. Rep. 7, 6275 (2017).

    ADS  Article  Google Scholar 

  50. 50.

    Civiš, S., Ferus, M., Kubat, P., Zukalova, M. & Kavan, L. Oxygen-isotope exchange between CO2 and solid Ti18O2. J. Phys. Chem. C 115, 11156–11162 (2011).

    Google Scholar 

  51. 51.

    Ferus, M. et al. Spontaneous and photoinduced conversion of CO2 on TiO2 anatase (001)/(101) surfaces. J. Phys. Chem. C 118, 26845–26850 (2014).

    Article  Google Scholar 

  52. 52.

    Civiš, S. et al. Oxygen atom exchange between gaseous CO2 and TiO2 nanoclusters. J. Phys. Chem. C 119, 3605–3612 (2015).

    Article  Google Scholar 

  53. 53.

    Civiš, S. et al. Spontaneous oxygen isotope exchange between carbon dioxide and oxygen-containing minerals: Do the minerals ‘breathe’ CO2? J. Phys. Chem. C 120, 508–516 (2016).

    Article  Google Scholar 

  54. 54.

    Kavan, L. et al. Oxygen-isotope labeled titania: Ti18O2. Phys. Chem. Chem. Phys. 13, 11583–11586 (2011).

    Article  Google Scholar 

  55. 55.

    Harris, F. J. On the use of windows for harmonic analysis with the discrete Fourier transform. Proc. IEEE 66, 51–83 (1978).

    ADS  Article  Google Scholar 

  56. 56.

    OPUS Spectroscopy Software, Version 6 (Bruker Optic, 2006);

Download references


This work is a part of a research series funded by the Czech Science Foundation (grants no. 17-05076S and 13-07724S), by the programme of Regional Cooperation between the Regions and the Institutes of the Czech Academy of Sciences in 2017 (project numbers: R200401721 and R200401521) and by the STS Missions programme within the COST Actions CM1401 and TD1308. The authors also thank the PALS facility staff for supporting the experiments, particularly L. Juha, J. Ullschmied, J. Skála, J. Dostál, P. Prchal and J. Mareš. We also thank the Ministry of Education, Youth and Sports of the Czech Republic for supporting the PALS infrastructure operation and research by grants LM2015083 and LG15013.

Author information




S.C. and M.F. came up with the idea; A.K., M.F. and S.C. conducted the experiments; O.I. conducted the GC-MS analysis; A.K. and P.K. performed evaluation of the data; L.K. and M.Z. prepared the TiO2 samples; S.C., M.F., A.K., L.K. and M.Z. wrote the paper.

Corresponding author

Correspondence to Svatopluk Civiš.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary Information

Supplementary Text, Supplementary Figures 1–15, Supplementary Tables 1–3, Supplementary References

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Civiš, S., Knížek, A., Ivanek, O. et al. The origin of methane and biomolecules from a CO2 cycle on terrestrial planets. Nat Astron 1, 721–726 (2017).

Download citation

Further reading