Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The Pluto system after the New Horizons flyby

Abstract

In July 2015, NASA’s New Horizons mission performed a flyby of Pluto, revealing details about the geology, surface composition and atmospheres of this world and its moons that are unobtainable from Earth. With a resolution as small as 80 metres per pixel, New Horizons’ images identified a large number of surface features, including a large basin filled with glacial ices that appear to be undergoing convection. Maps of surface composition show latitudinal banding, with non-volatile material dominating the equatorial region and volatile ices at mid- and polar latitudes. This pattern is driven by the seasonal cycle of solar insolation. New Horizons’ atmospheric investigation found the temperature of Pluto’s upper atmosphere to be much cooler than previously modelled. Images of forward-scattered sunlight revealed numerous haze layers extending up to 200 km from the surface. These discoveries have transformed our understanding of icy worlds in the outer Solar System, demonstrating that even at great distances from the Sun, worlds can have active geologic processes. This Review addresses our current understanding of the Pluto system and places it in context with previous investigations. 

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: The Pluto system as seen through the years with increasing technical capabilities.
Fig. 2: The dynamic duo.
Fig. 3: What lies beneath?
Fig. 4: Composition maps of Pluto’s surface from bidirectional reflectance modelling.
Fig. 5: Pluto’s climate regions.

References

  1. 1.

    Buratti, B. et al. Photometry of Pluto in the last decade and before: evidence for volatile transport? Icarus 162, 171–182 (2003).

    ADS  Article  Google Scholar 

  2. 2.

    Buratti, B. et al. Photometry of Pluto 2008–2014: evidence of ongoing seasonal volatile transport and activity. Astrophys. J. Lett. 804, L6–L12 (2015).

    ADS  Article  Google Scholar 

  3. 3.

    Buie, M. W. et al. Pluto and Charon with the Hubble Space Telescope. II. Resolving changes on Pluto’s surface and a map for Charon. Astron. J. 139, 1128–1143 (2010).

    ADS  Article  Google Scholar 

  4. 4.

    Buie, M. W. & Tholen, D. J. The surface albedo distribution of Pluto. Icarus 79, 23–37 (1989).

    ADS  Article  Google Scholar 

  5. 5.

    Buie, M. W. et al. in Pluto and Charon (eds Stern, S. A. & Tholen, D. J.) 269–293 (Univ. Arizona Press, Tucson, Arizona, 1997).

    Google Scholar 

  6. 6.

    Tholen, D. J. & Buie, M. W. in Pluto and Charon (eds Stern, S. A. & Tholen, D. J.) 347–390 (Univ. Arizona Press, Tucson, Arizona, 1997).

    Google Scholar 

  7. 7.

    Lellouch, E. et al. Pluto’s lower atmosphere structure and methane abundance from high-resolution spectroscopy and stellar occultations. Astron. Astrophys. 495, L17–L21 (2009).

    ADS  Article  Google Scholar 

  8. 8.

    Buie, M. W., Tholen, D. J. & Horne, K. Albedo maps of Pluto and Charon: initial mutual events results. Icarus 97, 211–227 (1992).

    ADS  Article  Google Scholar 

  9. 9.

    Young, E. F. et al. Mapping the variegated surface of Pluto. Astron. J. 117, 1063–1076 (1999).

    ADS  Article  Google Scholar 

  10. 10.

    Young, E. F., Binzel, R. P. & Crane, K. A two-color map of Pluto’s sub-Charon hemisphere. Astron. J. 121, 552–561 (2001).

    ADS  Article  Google Scholar 

  11. 11.

    Binzel, R. P. Hemispherical color differences on Pluto and Charon. Science 241, 1070–1072 (1988).

    ADS  Article  Google Scholar 

  12. 12.

    Albrecht, R. et al. High-resolution imaging of the Pluto–Charon system with the Faint Object Camera of the Hubble Space Telescope. Astrophys. J. 435, L75–L78 (1994).

    ADS  Article  Google Scholar 

  13. 13.

    Stern, S. A., Buie, M. W. & Trafton, L. M. HST high-resolution images and maps of Pluto. Astron. J. 113, 827–843 (1997).

    ADS  Article  Google Scholar 

  14. 14.

    Young, L. A. et al. New Horizons: anticipated scientific investigations at the Pluto system. Space Sci. Rev. 140, 93–127 (2008).

    ADS  Article  Google Scholar 

  15. 15.

    Buratti, B. et al. Global albedos of Pluto and Charon from LORRI New Horizons observations. Icarus 287, 207–217 (2017).

    ADS  Article  Google Scholar 

  16. 16.

    Moore, J. M. et al. The geology of Pluto and Charon through the eyes of New Horizons. Science 351, 1284–1293 (2016).

    ADS  Article  Google Scholar 

  17. 17.

    Hammond, N. P., Barr, A. C. & Parmentier, E. M. Recent tectonic activity on Pluto driven by phase changes in the ice shell. Geophys. Res. Lett. 43, 6775–6782 (2016).

    ADS  Article  Google Scholar 

  18. 18.

    Howard, A. D. et al. Pluto: pits and mantles on uplands north and east of Sputnik Planitia. Icarus 293, 218–230 (2017).

    ADS  Article  Google Scholar 

  19. 19.

    Johnson, B. C. et al. Formation of the Sputnik Planum basin and the thickness of Pluto’s subsurface ocean. Geophys. Res. Lett. 43, 10068–10077 (2016).

    ADS  Article  Google Scholar 

  20. 20.

    McKinnon, W. B. et al. Convection in a volatile nitrogen-rich-ice layer drives Pluto’s geologic vigour. Nature 534, 82–85 (2016).

    ADS  Article  Google Scholar 

  21. 21.

    White, O. L. et al. Geologic mapping of Sputnik Planitia on Pluto. Icarus 287, 261–286 (2017).

    ADS  Article  Google Scholar 

  22. 22.

    Hamilton, D. P. et al. The rapid formation of Sputnik Planitia early in Pluto’s history. Nature 540, 97–99 (2016).

    ADS  Article  Google Scholar 

  23. 23.

    Nimmo, F. et al. Global mean radius and shape of Pluto and Charon from New Horizons images. Icarus 287, 12–29 (2017).

    ADS  Article  Google Scholar 

  24. 24.

    Schenk, P. M. & Zahnle, K. On the negligible surface age of Triton. Icarus 192, 135–149 (2007).

    ADS  Article  Google Scholar 

  25. 25.

    Nimmo, F. & Spencer, J. R. Powering Triton’s recent geological activity by obliquity tides: implications for Pluto geology. Icarus 246, 2–10 (2015).

    ADS  Article  Google Scholar 

  26. 26.

    Beyer, R. A. et al. Charon tectonics. Icarus 287, 161–174 (2017).

    ADS  Article  Google Scholar 

  27. 27.

    Robbins, S. et al. Craters in the Pluto–Charon system. Icarus 287, 187–206 (2017).

    ADS  Article  Google Scholar 

  28. 28.

    Stern, S. A. et al. The Pluto system: initial results from its exploration by New Horizons. Science 350, 1815 (2015).

    ADS  Article  Google Scholar 

  29. 29.

    Rhoden, A. R. et al. The interior and orbital evolution of Charon as preserved in its geologic record. Icarus 246, 11–20 (2015).

    ADS  Article  Google Scholar 

  30. 30.

    Grundy, W. M. et al. Near-infrared spectral monitoring of Pluto’s ices: spatial distribution and secular evolution. Icarus 223, 710–721 (2013).

    ADS  Article  Google Scholar 

  31. 31.

    Prokhvatilov, A. I. & Yantsevich, L. D. X-ray investigation of the equilibrium phase diagram of CH4–N2 solid mixtures. Sov. J. Low Temp. Phys. 9, 94–98 (1983).

    Google Scholar 

  32. 32.

    Grundy, W. M. et al. Surface compositions across Pluto and Charon. Science 351, aad9189 (2016).

    ADS  Article  Google Scholar 

  33. 33.

    Protopapa, S. et al. Pluto’s global surface composition through pixel-by-pixel Hapke modeling of New Horizons Ralph/LEISA data. Icarus 287, 218–228 (2017).

    ADS  Article  Google Scholar 

  34. 34.

    Schmitt, B. et al. Physical state and distribution of materials at the surface of Pluto from New Horizons LEISA imaging spectrometer. Icarus 287, 229–260 (2017).

    ADS  Article  Google Scholar 

  35. 35.

    Cruikshank, D. P., Imanaka, H. & Dalle Ore, C. M. Tholins as coloring agents on outer solar system bodies. Adv. Space Res. 36, 178–183 (2005).

    ADS  Article  Google Scholar 

  36. 36.

    Earle, A. et al. Long-term surface temperature modeling of Pluto. Icarus 287, 37–46 (2017).

    ADS  Article  Google Scholar 

  37. 37.

    Bertrand, T. & Forget, F. Observed glacier and volatile distribution on Pluto from atmosphere–topography processes. Nature 540, 86–89 (2016).

    ADS  Article  Google Scholar 

  38. 38.

    Cruikshank, D. et al. The surface compositions of Pluto and Charon. Icarus 246, 82–92 (2015).

    ADS  Article  Google Scholar 

  39. 39.

    Grundy, W. M. et al. The formation of Charon’s red poles from seasonally cold-trapped volatiles. Nature 539, 65–68 (2016).

    ADS  Article  Google Scholar 

  40. 40.

    Gladstone, G. R. et al. The atmosphere of Pluto as observed by New Horizons. Science 351, aad8866 (2016).

    ADS  Article  Google Scholar 

  41. 41.

    Cruikshank, D. P. et al. Pluto — evidence for methane frost. Science 194, 835–837 (1976).

    ADS  Google Scholar 

  42. 42.

    Elliot, J. L. et al. Pluto’s atmosphere. Icarus 77, 148–170 (1989).

    ADS  Article  Google Scholar 

  43. 43.

    Elliot, J. L. et al. The recent expansion of Pluto’s atmosphere. Nature 424, 165–168 (2003).

    ADS  Article  Google Scholar 

  44. 44.

    Sicardy, B. et al. Large changes in Pluto’s atmosphere as revealed by recent stellar occultations. Nature 424, 168–170 (2003).

    ADS  Article  Google Scholar 

  45. 45.

    Olkin, C. B. et al. Evidence that Pluto’s Atmosphere does not collapse from occultations including the 2013 May 04 event. Icarus 246, 220–225 (2015).

    ADS  Article  Google Scholar 

  46. 46.

    Sicardy, B. et al. Pluto’s atmosphere from the 29 June 2015 ground-based stellar occultation at the time of the New Horizons’ flyby. Astrophys. J. Lett. 426, 220–225 (2016).

    Google Scholar 

  47. 47.

    Young, L. A. et al. Detection of gaseous methane on Pluto. Icarus 127, 258–262 (1997).

    ADS  Article  Google Scholar 

  48. 48.

    Lellouch, E. et al. Detection of CO and HCN in Pluto’s atmosphere with ALMA. Icarus 286, 289–307 (2017).

    ADS  Article  Google Scholar 

  49. 49.

    Gao, P. et al. Constraints on the microphysics of Pluto’s photochemical haze from New Horizons observations. Icarus 287, 116–123 (2017).

    ADS  Article  Google Scholar 

  50. 50.

    Young, L. A. et al. Structure and composition of Pluto’s atmosphere from the New Horizons solar ultraviolet occultation. Icarus https://doi.org/10.1016/j.icarus.2017.09.006 (2017).

  51. 51.

    Wong, M. L. et al. The photochemistry of Pluto’s atmosphere as illuminated by New Horizons. Icarus 287, 110–115 (2017).

    ADS  Article  Google Scholar 

  52. 52.

    Sepan, R. et al. Preparing and implementing the New Horizons uplink occultations: applying concepts, tools, and lessons learned over nearly a decade of flight to achieve a successful operation. SpaceOps 2016 Conf. AIAA 2016–2537 (2016).

  53. 53.

    Hinson, D. P. et al. Radio occultation measurements of Pluto’s neutral atmosphere with New Horizons. Icarus 290, 96–111 (2017).

    ADS  Article  Google Scholar 

  54. 54.

    Gurrola, E. M. Interpretation of Radar Data from the Icy Galilean Satellites and Triton. PhD thesis, Stanford Univ. (1995).

  55. 55.

    Stern, A. S. et al. New Horizons constraints on Charon’s present day atmosphere. Icarus 287, 124–130 (2017).

    ADS  Article  Google Scholar 

  56. 56.

    Tombaugh, C. W. Reminiscences of the discovery of Pluto. Sky & Telescope 264–270 (March 1960).

  57. 57.

    Christy, J. W. & Harrington, R. S. The satellite of Pluto. Astron. J. 83, 1005–1008 (1978).

    ADS  Article  Google Scholar 

  58. 58.

    Christy, J. W. & Harrington, R. S. The discovery and orbit of Charon. Icarus 44, 38–40 (1980).

    ADS  Article  Google Scholar 

  59. 59.

    Weaver, H. A. et al. Discovery of two new satellites of Pluto. Nature 439, 943–945 (2006).

    ADS  Article  Google Scholar 

  60. 60.

    Showalter, M. R. et al. New satellite of (134340) Pluto: S/2011 (134340). Int. Astron. Union Circ. 9221 (2011).

  61. 61.

    Showalter, M. R. et al. New satellite of (134340) Pluto: S/2012 (134340). Int. Astron. Union Circ. 9253 (2012).

  62. 62.

    Weaver, H. A. et al. The small satellites of Pluto as observed by New Horizons. Science 351, 1281 (2016).

    Article  Google Scholar 

  63. 63.

    Binzel, R. P. et al. Climate zones on Pluto and Charon. Icarus 287, 30–36 (2017).

    ADS  Article  Google Scholar 

  64. 64.

    Stern, S. A. et al. Past epochs of significantly higher pressure atmospheres on Pluto. Icarus 287, 47–53 (2017).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the NASA New Horizons project. We thank the engineers and staff of the New Horizons team whose dedication enabled the initial reconnaissance of the Pluto system.

Author information

Affiliations

Authors

Contributions

C.B.O. wrote Box 2 and the sections on surface composition and atmospheres. K.E. wrote Box 1 and sections entitled ‘Light curves to maps’ and ‘Open questions’. J.S. detailed the geology of Pluto and Charon.

Corresponding author

Correspondence to Catherine B. Olkin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Olkin, C.B., Ennico, K. & Spencer, J. The Pluto system after the New Horizons flyby. Nat Astron 1, 663–670 (2017). https://doi.org/10.1038/s41550-017-0257-3

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing