Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A candidate sub-parsec binary black hole in the Seyfert galaxy NGC 7674

Abstract

The existence of binary supermassive black holes (SBHs) is predicted by models of hierarchical galaxy formation. To date, only a single binary SBH has been imaged, at a projected separation of 7.3 pc. Here, we report the detection of a candidate dual SBH with projected separation of 0.35 pc in the gas-rich interacting spiral galaxy NGC 7674 (Mrk 533). This peculiar Seyfert galaxy possesses a roughly 0.7 kpc Z-shaped radio jet. The leading model for the formation of such sources postulates the presence of an uncoalesced binary SBH created during the infall of a satellite galaxy. Using very long baseline interferometry, we imaged the central region of Mrk 533 at radio frequencies of 2, 5, 8 and 15 GHz. Two, possibly inverted-spectrum, radio cores were detected at 15 GHz only. The 8–15 GHz spectral indices of the two cores were ≥−0.33 and ≥−0.38 (±30%), consistent with accreting SBHs. We derived a jet speed of around 0.28c from multi-epoch parsec-scale data of the hotspot region and a source age of ≥ 8.2 × 103 years.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: 15 GHz contour image of Mrk 533 from the EVLA in the A-array configuration showing the C and W hotspots, as well as a roughly 100 mas radio core detected in this galaxy.
Fig. 2: VLBA contour image at 2 GHz showing the southeast (C) and northwest (W) hotspots, along with the position of the cores detected at 15 GHz as a cross.
Fig. 3: VLBI image showing the two cores (C1 and C2) detected at 15 GHz.
Fig. 4: A 2–5 GHz spectral index image of the two hotspots.
Fig. 5: Radio spectrum of the two VLBI cores in Mrk 533, which are only detected at 15 GHz.
Fig. 6: 5 GHz contour images of the southeast hotspot region of Mrk 533 in two different epochs.

Similar content being viewed by others

References

  1. Sanders, D. B. & Mirabel, I. F. Luminous infrared galaxies. Annu. Rev. Astron. Astr. 34, 749–792 (1996).

    Article  ADS  Google Scholar 

  2. Verdes-Montenegro, L. et al. Hickson 96: a physical compact group. Astron. Astrophys. 321, 409–423 (1997).

    ADS  Google Scholar 

  3. Lasker, B. M. et al. The Guide Star Catalog. I—Astronomical foundations and image processing. Astron. J. 99, 2019–2058 (1990).

    Article  ADS  Google Scholar 

  4. Miller, J. S. & Goodrich, R. W. Spectropolarimetry of high-polarization Seyfert 2 galaxies and unified Seyfert theories. Astrophys. J. 355, 456–467 (1990).

    Article  ADS  Google Scholar 

  5. Begelman, M. C., Blandford, R. D. & Rees, M. J. Massive black hole binaries in active galactic nuclei. Nature 287, 307–309 (1980).

    Article  ADS  Google Scholar 

  6. Aguerri, J. A. L., Balcells, M. & Peletier, R. F. Growth of galactic bulges by mergers. I. Dense satellites. Astron. Astrophys. 367, 428–442 (2001).

    Article  ADS  Google Scholar 

  7. Kormendy, J. & Ho, L. C. Coevolution (or not) of supermassive black holes and host galaxies. Annu. Rev. Astron. Astr. 51, 511–653 (2013).

    Article  ADS  Google Scholar 

  8. Momjian, E., Romney, J. D., Carilli, C. L. & Troland, T. H. Sensitive VLBI continuum and H I absorption observations of NGC 7674: first scientific observations with the combined array VLBA, VLA, and Arecibo. Astrophys. J. 597, 809–822 (2003).

    Article  ADS  Google Scholar 

  9. Barvainis, R., Lonsdale, C. & Antonucci, R. Radio spectra of radio quiet quasars. Astron. J. 111, 1431–1443 (1996).

    Article  ADS  Google Scholar 

  10. Kharb, P. et al. Very Large Baseline Array observations of Mrk 6: probing the jet–lobe connection. Mon. Not. R. Astron. Soc. 440, 2976–2987 (2014).

    Article  ADS  Google Scholar 

  11. Hancock, P. J., Sadler, E. M., Mahony, E. K. & Ricci, R. Observations and properties of candidate high-frequency GPS radio sources in the AT20G survey. Mon. Not. R. Astron. Soc. 408, 1187–1206 (2010).

    Article  ADS  Google Scholar 

  12. Ulvestad, J. S., Antonucci, R. R. J. & Barvainis, R. VLBA imaging of central engines in radio-quiet quasars. Astrophys. J. 621, 123–129 (2005).

    Article  ADS  Google Scholar 

  13. Varenius, E. et al. The population of SNe/SNRs in the starburst galaxy Arp 220. A self-consistent analysis of 20 years of VLBI monitoring. Preprint at https://arxiv.org/abs/1702.04772 (2017).

  14. Pérez-Torres, M. A., Romero-Cañizales, C., Alberdi, A. & Polatidis, A. An extremely prolific supernova factory in the buried nucleus of the starburst galaxy IC 694. Astron. Astrophys. 507, L17–L20 (2009).

    Article  ADS  Google Scholar 

  15. Rodriguez, C. et al. A compact supermassive binary black hole system. Astrophys. J. 646, 49–60 (2006).

    Article  ADS  Google Scholar 

  16. Boroson, T. A. & Lauer, T. R. A candidate sub-parsec supermassive binary black hole system. Nature 458, 53–55 (2009).

    Article  ADS  Google Scholar 

  17. Chornock, R. et al. SDSS J1536+0441: an extreme “double-peaked emitter,” not a binary black hole. The Astronomer’s Telegram 1955 (2009).

  18. Wrobel, J. M. & Laor, A. Discovery of radio emission from the Quasar SDSS J1536+0441, a candidate binary black hole system. Astrophys. J. Lett. 699, L22–L25 (2009).

    Article  ADS  Google Scholar 

  19. Woo, J.-H. & Urry, C. M. Active galactic nucleus black hole masses and bolometric luminosities. Astrophys. J. 579, 530–544 (2002).

    Article  ADS  Google Scholar 

  20. Ferrarese, L. & Merritt, D. A fundamental relation between supermassive black holes and their host galaxies. Astrophys. J. Lett. 539, L9–L12 (2000).

    Article  ADS  Google Scholar 

  21. Ho, L. C. Nuclear activity in nearby galaxies. Annu. Rev. Astron. Astr. 46, 475–539 (2008).

    Article  ADS  Google Scholar 

  22. Hada, K. et al. An origin of the radio jet in M87 at the location of the central black hole. Nature 477, 185–187 (2011).

    Article  ADS  Google Scholar 

  23. Peterson, B. M. & Cota, S. A. The size of the broad-line region in the Seyfert galaxy NGC 4151. Astrophys. J. 330, 111–120 (1988).

    Article  ADS  Google Scholar 

  24. Pozo Nuñez, F. et al. The broad-line region and dust torus size of the Seyfert 1 galaxy PGC 50427. Astron. Astrophys. 576, A73 (2015).

    Article  Google Scholar 

  25. Merritt, D. Dynamics and Evolution of Galactic Nuclei (Princeton Univ. Press, Princeton, NJ, 2013).

    MATH  Google Scholar 

  26. Lal, D. V., Shastri, P. & Gabuzda, D. C. Milliarcsec-scale radio structure of a matched sample of Seyfert 1 and Seyfert 2 galaxies. Astron. Astrophys. 425, 99–108 (2004).

    Article  ADS  Google Scholar 

  27. Ulvestad, J. S. et al. Subrelativistic radio jets and parsec-scale absorption in two Seyfert galaxies. Astrophys. J. Lett. 517, L81–L84 (1999).

    Article  ADS  Google Scholar 

  28. Bicknell, G. V., Dopita, M. A., Tsvetanov, Z. I. & Sutherland, R. S. Are Seyfert narrow-line regions powered by radio jets? Astrophys. J. 495, 680–690 (1998).

    Article  ADS  Google Scholar 

  29. Middelberg, E. et al. Motion and properties of nuclear radio components in Seyfert galaxies seen with VLBI. Astron. Astrophys. 417, 925–944 (2004).

    Article  ADS  Google Scholar 

  30. De Young, D. S. The Physics of Extragalactic Radio Sources (Univ. Chicago Press, Chicago, IL, 2002).

    Google Scholar 

  31. Gopal-Krishna, Biermann, P. L. & Wiita, P. J. The origin of X-shaped radio galaxies: clues from the Z-symmetric secondary lobes. Astrophys. J. Lett. 594, L103–L106 (2003).

    Article  ADS  Google Scholar 

  32. Zier, C. Orientation and size of the ‘Z’ in X-shaped radio galaxies. Mon. Not. R. Astron. Soc. 364, 583–592 (2005).

    Article  ADS  Google Scholar 

  33. Merritt, D. & Ekers, R. D. Tracing black hole mergers through radio lobe morphology. Science 297, 1310–1313 (2002).

    Article  ADS  Google Scholar 

  34. Leahy, J. P. & Williams, A. G. The bridges of classical double radio sources. Mon. Not. R. Astron. Soc. 210, 929–951 (1984).

    Article  ADS  Google Scholar 

  35. Worrall, D. M., Birkinshaw, M. & Cameron, R. A. The X-ray environment of the dumbbell radio galaxy NGC 326. Astrophys. J. 449, 93–104 (1995).

    Article  ADS  Google Scholar 

  36. Milosavljević, M. & Merritt, D. in The Astrophysics of Gravitational Wave Sources (ed. Centrella, J. M.) 201–210 (2003).

  37. Bardeen, J. M. & Petterson, J. A. The Lense–Thirring effect and accretion disks around Kerr black holes. Astrophys. J. Lett. 195, L65–L67 (1975).

    Article  ADS  Google Scholar 

  38. Valtonen, M. J. New orbit solutions for the precessing binary black hole model of OJ 287. Astrophys. J. 659, 1074–1081 (2007).

    Article  ADS  Google Scholar 

  39. Graham, M. J. et al. A possible close supermassive black-hole binary in a quasar with optical periodicity. Nature 518, 74–76 (2015).

    Article  ADS  Google Scholar 

  40. Cordes, J. M. Limits to PTA sensitivity: spin stability and arrival time precision of millisecond pulsars. Class. Quantum Grav. 30, 224002 (2013).

    Article  ADS  Google Scholar 

  41. Huerta, E. A., McWilliams, S. T., Gair, J. R. & Taylor, S. R. Detection of eccentric supermassive black hole binaries with pulsar timing arrays: signal-to-noise ratio calculations. Phys. Rev. D 92, 063010 (2015).

    Article  ADS  Google Scholar 

  42. Babak, S. et al. European pulsar timing array limits on continuous gravitational waves from individual supermassive black hole binaries. Mon. Not. R. Astron. Soc. 455, 1665–1679 (2016).

    Article  ADS  Google Scholar 

  43. Rasskazov, A. & Merritt, D. Evolution of massive black hole binaries in rotating stellar nuclei: Implications for gravitational wave detection. Preprint at https://arxiv.org/abs/1606.07484 (2016).

  44. Amaro Seoane, P. et al. The Gravitational Universe. Preprint at https://arxiv.org/abs/1305.5720 (2013).

Download references

Acknowledgements

P.K. and D.V.L. thank D. C. Gabuzda for help in obtaining the 1998 and 2002 VLBA data and provision of expert knowledge on VLBI data reduction. D.M. was supported by the National Science Foundation under grant no. AST 1211602 and the National Aeronautics and Space Administration under grant no. NNX13AG92G. The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities.

Author information

Authors and Affiliations

Authors

Contributions

P.K. reduced the 2002 VLBA data, coordinated the research and wrote the manuscript. D.V.L. led the VLBA proposals for the 2002 and 1998 data, reduced the 1998 data and provided feedback on the manuscript. D.M. provided the theoretical framework for the project.

Corresponding author

Correspondence to P. Kharb.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kharb, P., Lal, D.V. & Merritt, D. A candidate sub-parsec binary black hole in the Seyfert galaxy NGC 7674. Nat Astron 1, 727–733 (2017). https://doi.org/10.1038/s41550-017-0256-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-017-0256-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing