Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Protostellar and cometary detections of organohalogens

Abstract

Organohalogens, a class of molecules that contain at least one halogen atom bonded to carbon, are abundant on the Earth where they are mainly produced through industrial and biological processes1. Consequently, they have been proposed as biomarkers in the search for life on exoplanets2. Simple halogen hydrides have been detected in interstellar sources and in comets, but the presence and possible incorporation of more complex halogen-containing molecules such as organohalogens into planet-forming regions is uncertain3,4. Here we report the interstellar detection of two isotopologues of the organohalogen CH3Cl and put some constraints on CH3F in the gas surrounding the low-mass protostar IRAS 16293–2422, using the Atacama Large Millimeter/submillimeter Array (ALMA). We also find CH3Cl in the coma of comet 67P/Churyumov–Gerasimenko (67P/C-G) by using the Rosetta Orbiter Spectrometer for Ion and Neutral Analysis (ROSINA) instrument. The detections reveal an efficient pre-planetary formation pathway of organohalogens. Cometary impacts may deliver these species to young planets and should thus be included as a potential abiotical production source when interpreting future organohalogen detections in atmospheres of rocky planets.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Methyl halide transitions in a spectrum extracted around protostar IRAS 16293B.
Fig. 2: Spatial emission of CH3 35Cl compared with that of CH3OCHO around protostar IRAS 16293B.
Fig. 3: Mass spectrum of the coma of comet 67P/C-G for molecular fragments around mass/charge equal to 50 u/e.

References

  1. Read, K. A. et al. Extensive halogen-mediated ozone destruction over the tropical Atlantic Ocean. Nature 453, 1232–1235 (2008).

    ADS  Article  Google Scholar 

  2. Segura, A. et al. Biosignatures from Earth-like planets around M dwarfs. Astrobiology 5, 706–725 (2005).

    ADS  Article  Google Scholar 

  3. Blake, G. A., Keene, J. & Phillips, T. G. Chlorine in dense interstellar clouds—the abundance of HCl in OMC-1. Astrophys. J. 295, 501–506 (1985).

    ADS  Article  Google Scholar 

  4. Neufeld, D. A., Zmuidzinas, J., Schilke, P. & Phillips, T. G. Discovery of interstellar hydrogen fluoride 1. Astrophys. J. 488, L141–L144 (1997).

    ADS  Article  Google Scholar 

  5. Gribble, G. W. Naturally occurring organohalogen compounds–a survey. J. Nat. Prod. 55, 1353–1395 (1992).

    Article  Google Scholar 

  6. Lin, H. W., Gonzalez Abad, G. & Loeb, A. detecting industrial pollution in the atmospheres of Earth-like exoplanets. Astrophys. J. Lett. 792, L7 (2014).

    ADS  Article  Google Scholar 

  7. Seager, S. & Bains, W. The search for signs of life on exoplanets at the interface of chemistry and planetary science. Sci. Adv. 1, e1500047 (2015).

    ADS  Article  Google Scholar 

  8. Keppler, F., Harper, D. B., Röckmann, T., Moore, R. M. & Hamilton, J. T. G. New insight into the atmospheric chloromethane budget gained using stable carbon isotope ratios. Atmos. Chem. Phys. 5, 2403–2411 (2005).

    ADS  Article  Google Scholar 

  9. Glavin, D. P. et al. Evidence for perchlorates and the origin of chlorinated hydrocarbons detected by SAM at the Rocknest aeolian deposit in Gale Crater. J. Geophys. Res. Planets 118, 1955–1973 (2013).

    ADS  Article  Google Scholar 

  10. Keppler, F. et al. Chloromethane release from carbonaceous meteorite affords new insight into Mars lander findings. Sci. Rep. 4, 7010 (2014).

    Article  Google Scholar 

  11. De Luca, M. et al. Herschel/HIFI discovery of HCl+ in the interstellar medium. Astrophys. J. 751, L37 (2012).

    ADS  Article  Google Scholar 

  12. Lis, D. C. et al. Herschel/HIFI discovery of interstellar chloronium (H2Cl+). Astron. Astrophys. 521, L9 (2010).

    ADS  Article  Google Scholar 

  13. Neufeld, D. A. et al. Discovery of interstellar CF+. Astron. Astrophys. 454, L37–L40 (2006).

    ADS  Article  Google Scholar 

  14. Peng, R. et al. A comprehensive survey of hydrogen chloride in the Galaxy. Astrophys. J. 723, 218–228 (2010).

    ADS  Article  Google Scholar 

  15. van Dishoeck, E. F., Blake, G. A., Jansen, D. J. & Groesbeck, T. D. Molecular abundances and low-mass star formation. II. Organic and deuterated species toward IRAS 16293-2422. Astrophys. J. 447, 760 (1995).

    ADS  Article  Google Scholar 

  16. Cazaux, S. et al. The hot core around the low-mass protostar IRAS 16293-2422: scoundrels rule! Astrophys. J. 593, L51–L55 (2003).

    ADS  Article  Google Scholar 

  17. Jørgensen, J. K. et al. Detection of the simplest sugar, glycolaldehyde, in a solar-type protostar with ALMA. Astrophys. J. 757, L4 (2012).

    ADS  Article  Google Scholar 

  18. Dhooghe, F. et al. Halogens as tracers of protosolar nebula material in comet 67P/Churyumov–Gerasimenko. Mon. Not. R. Astron. Soc. https://doi.org/10.1093/mnras/stx1911 (2017).

  19. Le Roy, L. et al. Inventory of the volatiles on comet 67P/Churyumov–Gerasimenko from Rosetta/ROSINA. Astron. Astrophys. 583, A1 (2015).

    Article  Google Scholar 

  20. Rivera, J. L. et al. Internal and relative motions of the Taurus and Ophiuchus star-forming regions. Astrophys. J. 807, 119 (2015).

    ADS  Article  Google Scholar 

  21. Shu, F. H., Adams, F. C. & Lizano, S. Star formation in molecular clouds—observation and theory. Annu. Rev. Astron. Astrophys. 25, 23–81 (1987).

    ADS  Article  Google Scholar 

  22. Jørgensen, J. K. et al. The ALMA Protostellar Interferometric Line Survey (PILS). First results from an unbiased submillimeter wavelength line survey of the Class 0 protostellar binary IRAS 16293-2422 with ALMA. Astron. Astrophys. 595, A117 (2016).

    Article  Google Scholar 

  23. Hässig, M. et al. ROSINA/DFMS capabilities to measure isotopic ratios in water at comet 67P/Churyumov–Gerasimenko. Planet. Space Sci. 84, 148–152 (2013).

    ADS  Article  Google Scholar 

  24. Lykke, J. M. et al. The ALMA-PILS survey: first detections of ethylene oxide, acetone and propanal toward the low-mass protostar IRAS 16293–2422. Astron. Astrophys. 597, A53 (2017).

    Article  Google Scholar 

  25. Coutens, A. et al. The ALMA-PILS survey: First detections of deuterated formamide and deuterated isocyanic acid in the interstellar medium. Astron. Astrophys. 590, L6 (2016).

    ADS  Article  Google Scholar 

  26. Brasser, R., Mojzsis, S. J., Werner, S. C., Matsumura, S. & Ida, S. Late veneer and late accretion to the terrestrial planets. Earth Planet. Sci. Lett. 455, 85–93 (2016).

    ADS  Article  Google Scholar 

  27. Chyba, C., Thomas, P., Brookshaw, L. & Sagan, C. Cometary delivery of organic molecules to the early Earth. Science 249, 366–373 (1990).

    ADS  Article  Google Scholar 

  28. Lim, K. P. & Michael, J. V. The thermal decomposition of CH3Cl using the Cl-atom absorption method and the bimolecular rate constant for O+CH3 (1609–2002 K) with a pyrolysis photolysis-shock tube technique. J. Chem. Phys. 98, 3919–3928 (1993).

    ADS  Article  Google Scholar 

  29. Wlodarczak, G., Boucher, D., Bocquet, R. & Demaison, J. The microwave and submillimeter-wave spectrum of methyl chloride. J. Mol. Spectrosc. 116, 251–255 (1986).

    ADS  Article  Google Scholar 

  30. Cazzoli, G. & Puzzarini, C. Impact of sub-Doppler measurements on centrifugal-distortion terms: rotational spectrum of methyl fluoride revisited. J. Phys. Chem. A 119, 1765–1773 (2015).

    Article  Google Scholar 

  31. Pickett, H. M. The fitting and prediction of vibration–rotation spectra with spin interactions. J. Mol. Spectrosc. 148, 371–377 (1991).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

This work is based on observations from ALMA, a partnership of ESO (representing its member states), NSF (USA) and NINS (Japan), together with NRC (Canada), NSC and ASIAA (Taiwan), and KASI (Republic of Korea), in co-operation with the Republic of Chile. The Joint ALMA Observatory is operated by ESO, AUI/NRAO and NAOJ. Data from ROSINA, an instrument part of Rosetta mission, were used in this work. Rosetta is a European Space Agency (ESA) mission with contributions from its member states and NASA, and we acknowledge herewith the work of the whole ESA Rosetta team. E.C.F. and K.I.O. acknowledge financial support from the Simons Foundation (SCOL award 321183, KO) and to Northrop Grumman Corporation. The group of J.K.J. acknowledges support from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 646908) through ERC Consolidator Grant S4F. Research at the Centre for Star and Planet Formation is funded by the Danish National Research Foundation. Work at the University of Bern was funded by the State of Bern, the Swiss National Science Foundation, and the ESA PRODEX programme (Programme de Développement d’Expériences scientifiques). E.F.v.D. acknowledges A-ERC grant CHEMPLAN 291141. M.N.D. acknowledges the financial support of the Center for Space and Habitability (CSH) Fellowship and the IAU Gruber Foundation Fellowship. S.F.W. acknowledges financial support from a CSH fellowship.

Author information

Authors and Affiliations

Authors

Consortia

Contributions

E.C.F. initiated the project, and identified and analysed the newly detected species in the protostar spectra. E.C.F. and K.I.O. wrote the manuscript together. The Principal Investigator of the PILS survey, J.K.J, together with H.C. and M.H.D.v.d.W. generated the datacubes from the ALMA observations and assisted with the column density determinations. H.S.P.M. computed the CH3F line catalogue and assisted with the CH3Cl spectroscopy interpretations. R.T.G contributed the text on the formation pathways to organohalogens under interstellar medium conditions. The Principal Investigator of the ROSINA programme, K.A., together with M.R. reduced the DFMS data, and identified and provided the CH3Cl abundance ratios. The ALMA-PILS and ROSINA-DFMS collaboration was initiated by E.F.v.D., M.N.D. and S.F.W. J.K.J., H.S.P.M. and E.F.v.D. provided extensive input on the text. All the authors contributed to discussions of the results and commented on the manuscript.

Corresponding author

Correspondence to Edith C. Fayolle.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary Information

Supplementary Text and Supplementary References.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fayolle, E.C., Öberg, K.I., Jørgensen, J.K. et al. Protostellar and cometary detections of organohalogens. Nat Astron 1, 703–708 (2017). https://doi.org/10.1038/s41550-017-0237-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-017-0237-7

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing