Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Extragalactic radio continuum surveys and the transformation of radio astronomy

Abstract

Next-generation radio surveys are about to transform radio astronomy by discovering and studying tens of millions of previously unknown radio sources. These surveys will provide fresh insights for understanding the evolution of galaxies, measuring the evolution of the cosmic star-formation rate, and rivalling traditional techniques in the measurement of fundamental cosmological parameters. By observing a new volume of observational parameter space, they are also likely to discover unexpected phenomena. This Review traces the evolution of extragalactic radio continuum surveys from the earliest days of radio astronomy to the present, and identifies the challenges that must be overcome to achieve this transformational change.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Typical sources in the radio sky.
Fig. 2: Number of known extragalactic radio sources detected in surveys as a function of time.
Fig. 3: Sky area versus sensitivity of modern radio surveys.
Fig. 4: The number of radio sources as a function of flux density, plotted as a Euclidean-normalized differential source count plot at 1.4 GHz.

References

  1. 1.

    Jansky, K. G. Radio waves from outside the solar system. Nature 132, 66 (1933).

    ADS  Article  Google Scholar 

  2. 2.

    Sullivan, W. T. The Early Years of Radio Astronomy (Cambridge Univ. Press, Cambridge, 1984).

    Book  Google Scholar 

  3. 3.

    Reber, G. Notes: cosmic static. Astrophys. J. 91, 621–624 (1940).

    ADS  Article  Google Scholar 

  4. 4.

    Reber, G. Cosmic static. Astrophys. J. 100, 279–287 (1944).

    ADS  Article  Google Scholar 

  5. 5.

    Hey, J. S., Phillips, J. W. & Parsons, S. J. Cosmic radiations at 5 metres wave-length. Nature 157, 296–297 (1946).

    ADS  Article  Google Scholar 

  6. 6.

    Hey, J. S., Parsons, S. J. & Phillips, J. W. Fluctuations in cosmic radiation at radio-frequencies. Nature 158, 234 (1946).

    ADS  Article  Google Scholar 

  7. 7.

    Bolton, J. G. & Stanley, G. J. Variable source of radio frequency radiation in the constellation of Cygnus. Nature 161, 312–313 (1948).

    ADS  Article  Google Scholar 

  8. 8.

    Bolton, J. G., Stanley, G. J. & Slee, O. B. Positions of three discrete sources of galactic radio-frequency radiation. Nature 164, 101–102 (1949).

    ADS  Article  Google Scholar 

  9. 9.

    Baade, W. A. & Minkowski, R. L. Identification of the radio sources in Cassiopeia, Cygnus A, and Puppis A. Astrophys. J. 119, 206–214 (1954).

    ADS  Article  Google Scholar 

  10. 10.

    Greenstein, J. L. In The Early Years of Radio Astronomy (ed. Sullivan, W. T. iii) 67–81 (Cambridge Univ. Press, Cambridge, 1984).

  11. 11.

    Brown, R. H. & Hazard, C. Radio-frequency radiation from the great nebula in Andromeda (M.31). Nature 166, 901–902 (1950).

    ADS  Article  Google Scholar 

  12. 12.

    Bolton, J. G., Stanley, G. J. & Slee, O. B. Galactic radiation at radio frequencies. VIII. Discrete sources at 100 Mc/s between declinations +50° and –50°. Aust. J. Phys. 7, 110–129 (1954).

    ADS  Article  Google Scholar 

  13. 13.

    Kiepenheuer, K. O. Cosmic rays as the source of general galactic radio emission. Phys. Rev. 79, 738–739 (1950).

    ADS  Article  Google Scholar 

  14. 14.

    Shakeshaft, J. R., Ryle, M., Baldwin, J. E., Elsmore, B. & Thomson, J. H. A survey of radio sources between declinations –38° and +83°. Mem. R. Astr. Soc. 67, 106–153 (1955).

    ADS  Google Scholar 

  15. 15.

    Ryle, M. & Scheuer, P. A. G. The spatial distribution and the nature of radio stars. Proc. R. Soc. Lond. Ser. A 230, 448–462 (1955).

    ADS  Article  Google Scholar 

  16. 16.

    Mills, B. Y. In The Early Years of Radio Astronomy (ed. Sullivan, W. T. iii) 147–166 (Cambridge Univ. Press, Cambridge, 1984).

  17. 17.

    Scheuer, P. A. G. A statistical method for analysing observations of faint radio stars. Proc. Camb. Phil. Soc. 53, 764–773 (1957).

    ADS  MathSciNet  Article  Google Scholar 

  18. 18.

    Mills, B. Y. & Slee, O. B. A preliminary survey of radio sources in a limited region of the sky at the wavelength of 3.5 m. Aust. J. Phys. 10, 162–194 (1957).

    ADS  Article  Google Scholar 

  19. 19.

    Mills, B. Y., Slee, O. B. & Hill, E. R. A catalogue of radio sources between declinations +10° and –20°. Aust. J. Phys. 11, 360–387 (1958).

    ADS  Article  Google Scholar 

  20. 20.

    Edge, D. O., Shakeshaft, J. R., McAdam, W. B., Baldwin, J. E. & Archer, S. A survey of radio sources at a frequency of 159 Mc/s. Mem. R. Astron. Soc. 68, 37–60 (1959).

    ADS  Google Scholar 

  21. 21.

    Bennett, A. S. The revised 3C catalogue of radio sources. Mem. R. Astron. Soc. 68, 163–172 (1962).

    ADS  Google Scholar 

  22. 22.

    Scott, P. F. & Ryle, M. The number-flux density relation for radio sources away from the Galactic Plane. Mon. Not. R. Astron. Soc. 122, 389–397 (1961).

    ADS  Article  Google Scholar 

  23. 23.

    Colla, G. et al. The B2 catalogue of radio sources — third part. Astron. Astrophys. Supp. 1, 281–317 (1973).

    ADS  Google Scholar 

  24. 24.

    Ekers, J. A. The Parkes catalogue of radio sources, declination zone +20° to –90°. Aust. J. Phys. Astrop. Suppl. 7, 3–75 (1969).

    ADS  Google Scholar 

  25. 25.

    Otrupcek, R. E. & Wright, A. E. PKSCAT90 — the southern radio source database. Pub. Astron. Soc. Aust. 9, 170 (1991).

    ADS  Article  Google Scholar 

  26. 26.

    Rengelink, R. et al. The Westerbork Northern Sky Survey (WENSS). I. A 570 square degree mini-survey around the North Ecliptic Pole. Astron. Astrophys. Supp. 124, 259–280 (1997).

    ADS  Article  Google Scholar 

  27. 27.

    Condon, J. J. et al. The NRAO VLA Sky Survey. Astron. J. 115, 1693–1716 (1998).

    ADS  Article  Google Scholar 

  28. 28.

    Becker, R. H., White, R. L. & Helfand, D. J. The FIRST survey: Faint Images of the Radio Sky at Twenty centimeters. Astrophys. J. 450, 559–577 (1995).

    ADS  Article  Google Scholar 

  29. 29.

    Bock, D., Large, M. I. & Sadler, E. M. SUMSS: a wide-field radio imaging survey of the southern sky. I. Science goals, survey design, and instrumentation. Astron. J. 117, 1578–1593 (1999).

    ADS  Article  Google Scholar 

  30. 30.

    Mauch, T. et al. SUMSS: A wide-field radio imaging survey of the southern sky. II. The source catalogue. Mon. Not. R. Astron. Soc. 342, 1117–1130 (2003).

    ADS  Article  Google Scholar 

  31. 31.

    Fanaroff, B. L. & Riley, J. M. The morphology of extragalactic radio sources of high and low luminosity. Mon. Not. R. Astron. Soc. 167, 31P–36P (1974).

    ADS  Article  Google Scholar 

  32. 32.

    Barthel, P. D. Is every quasar beamed? Astrophys. J. 336, 606–611 (1989).

    ADS  Article  Google Scholar 

  33. 33.

    Orr, M. J. L. & Browne, I. W. A. Relativistic beaming and quasar statistics. Mon. Not. R. Astron. Soc. 200, 1067–1080 (1982).

    ADS  Article  Google Scholar 

  34. 34.

    Kellermann, K. I. The discovery of quasars and its aftermath. J. Ast. Hist. Heritage 17, 267–282 (2014).

    ADS  Google Scholar 

  35. 35.

    Sandage, A. The existence of a major new constituent of the Universe: the quasi-stellar galaxies. Astrophys. J. 141, 1560–1578 (1965).

    ADS  Article  Google Scholar 

  36. 36.

    Kellermann, K. I., Condon, J. J., Kimball, A. E., Perley, R. A. & Ivezic, V. Radio-loud and radio-quiet QSOs. Astrophys. J. 831, 168–180 (2016).

    ADS  Article  Google Scholar 

  37. 37.

    Bonzini, M. et al. Star formation properties of sub-mJy radio sources. Mon. Not. R. Astron. Soc. 453, 1079–1094 (2015).

    ADS  Article  Google Scholar 

  38. 38.

    Herrera Ruiz, N., Middelberg, E., Norris, R. P. & Maini, A. Unveiling the origin of the radio emission in radio-quiet quasars. Astron. Astrophys. 589, L2 (2016).

    ADS  Article  Google Scholar 

  39. 39.

    Maini, A., Prandoni, I., Norris, R. P., Giovannini, G. & Spitler, L. R. Compact radio cores in radio-quiet active galactic nuclei. Astron. Astrophys. 589, L3 (2016).

    ADS  Article  Google Scholar 

  40. 40.

    Norris, R. P. et al. Radio continuum surveys with square kilometre array pathfinders. Pub. Astron. Soc. Aust. 30, e020 (2013).

    ADS  Article  Google Scholar 

  41. 41.

    Norris, R. P. Discovering the unexpected in astronomical survey data. Pub. Astron. Soc. Aust. 34, e007 (2017).

    ADS  Article  Google Scholar 

  42. 42.

    Prandoni, I. & Seymour, N. Revealing the physics and evolution of galaxies and galaxy clusters with SKA continuum surveys. In Advancing Astrophysics with the Square Kilometre Array (AASKA14) 67 (2015).

  43. 43.

    Padovani, P. The faint radio sky: radio astronomy becomes mainstream. Astron. Astrophys. Rev. 24, 13 (2016).

    ADS  Article  Google Scholar 

  44. 44.

    Hopkins, A. M. & Beacom, J. F. On the normalization of the cosmic star formation history. Astrophys. J. 651, 142–154 (2006).

    ADS  Article  Google Scholar 

  45. 45.

    Bouwens, R. J., Illingworth, G. D., Franx, M. & Ford, H. z ~ 7–10 galaxies in the HUDF and GOODS fields: UV luminosity functions. Astrophys. J. 686, 230–250 (2008).

    ADS  Article  Google Scholar 

  46. 46.

    Kistler, M. D. et al. The star formation rate in the reionization era as indicated by gamma-ray bursts. Astrophys. J. 705, L104–L108 (2009).

    ADS  Article  Google Scholar 

  47. 47.

    van der Kruit, P. C. Observations of core sources in Seyfert and normal galaxies with the Westerbork synthesis radio telescope at 1415 MHz. Astron. Astrophys. 15, 110–122 (1971).

    ADS  Google Scholar 

  48. 48.

    Condon, J. J., Anderson, M. L. & Helou, G. Correlations between the far-infrared, radio, and blue luminosities of spiral galaxies. Astrophys. J. 376, 95–103 (1991).

    ADS  Article  Google Scholar 

  49. 49.

    Mao, M. Y. et al. No evidence for evolution in the far-infrared-radio correlation out to z ~ 2 in the extended Chandra deep field south. Astrophys. J. 731, 79 (2011).

    ADS  Article  Google Scholar 

  50. 50.

    Harwit, M. & Pacini, F. Infrared galaxies — evolutionary stages of massive star formation. Astrophys. J. 200, L127–L129 (1975).

    ADS  Article  Google Scholar 

  51. 51.

    Murphy, E. J. The far-infrared-radio correlation at high redshifts: physical considerations and prospects for the square kilometer array. Astrophys. J. 706, 482–496 (2009).

    ADS  Article  Google Scholar 

  52. 52.

    Lacki, B. C., Thompson, T. A. & Quataert, E. The physics of the far-infrared-radio correlation. I. Calorimetry, conspiracy, and implications. Astrophys. J. 717, 196–208 (2010).

    ADS  Article  Google Scholar 

  53. 53.

    Murphy, E. et al. The astrophysics of star formation across cosmic time at >10 GHz with the square kilometre array. In Advancing Astrophysics with the Square Kilometre Array (AASKA14) 85 (2015).

  54. 54.

    Best, P. N. & Heckman, T. M. On the fundamental dichotomy in the local radio-AGN population: accretion, evolution and host galaxy properties. Mon. Not. R. Astron. Soc. 421, 1569–1582 (2012).

    ADS  Article  Google Scholar 

  55. 55.

    Rees, G. A. et al. Radio galaxies in ZFOURGE/NMBS: no difference in the properties of massive galaxies with and without radio-AGN out to z = 2.25. Mon. Not. R. Astron. Soc. 455, 2731–2744 (2016).

    ADS  Article  Google Scholar 

  56. 56.

    Heckman, T. M. & Best, P. N. The coevolution of galaxies and supermassive black holes: insights from surveys of the contemporary Universe. Astron. Astrophys. 52, 589–660 (2014).

    ADS  Article  Google Scholar 

  57. 57.

    Saripalli, L., Subrahmanyan, R. & Udaya Shankar, N. Renewed activity in the radio galaxy PKS B1545–321: twin edge-brightened beams within diffuse radio lobes. Astrophys. J. 590, 181–191 (2003).

    ADS  Article  Google Scholar 

  58. 58.

    Schawinski, K., Koss, M., Berney, S. & Sartori, L. F. Active galactic nuclei flicker: an observational estimate of the duration of black hole growth phases of 105 yr. Mon. Not. R. Astron. Soc. 451, 2517–2523 (2015).

    ADS  Article  Google Scholar 

  59. 59.

    Silk, J. Feedback in galaxy formation. Tracing the ancestry of galaxies. Proc. IAU Symp. 277, 273–281 (2011).

    ADS  Google Scholar 

  60. 60.

    Croton, D. J. et al. The many lives of active galactic nuclei: cooling flows, black holes and the luminosities and colours of galaxies. Mon. Not. R. Astron. Soc. 365, 11–28 (2006).

    ADS  Article  Google Scholar 

  61. 61.

    Hardcastle, M. J., Evans, D. A. & Croston, J. H. Hot and cold gas accretion and feedback in radio-loud active galaxies. Mon. Not. R. Astron. Soc. 376, 1849–1856 (2007).

    ADS  Article  Google Scholar 

  62. 62.

    Wall, J. V., Jackson, C. A., Shaver, P. A., Hook, I. M. & Kellermann, K. I. The Parkes quarter-Jansky flat-spectrum sample. III. Space density and evolution of QSOs. Astron. Astrophys. 434, 133–148 (2005).

    ADS  Article  Google Scholar 

  63. 63.

    Mauch, T. & Sadler, E. M. Radio sources in the 6dFGS: local luminosity functions at 1.4GHz for star-forming galaxies and radio-loud AGN. Mon. Not. R. Astron. Soc. 375, 931–950 (2007).

    ADS  Article  Google Scholar 

  64. 64.

    Emonts, B. H. C. et al. Molecular gas in the halo fuels the growth of a massive cluster galaxy at high redshift. Science 354, 1128–1130 (2016).

    ADS  Article  Google Scholar 

  65. 65.

    van Weeren, R. J. et al. The case for electron re-acceleration at galaxy cluster shocks. Nat. Astron. 1, 0005 (2017).

    Article  Google Scholar 

  66. 66.

    Cassano, R. et al. Radio halos in future surveys in the radio continuum. Astron. Astrophys. 548, A100 (2012).

    Article  Google Scholar 

  67. 67.

    Brunetti, G. & Jones, T. W. Cosmic rays in galaxy clusters and their interaction with magnetic fields. Astrophys. Space Sci. 407, 557–598 (2015).

    Article  Google Scholar 

  68. 68.

    Blake, C. & Wall, J. A velocity dipole in the distribution of radio galaxies. Nature 416, 150–152 (2002).

    ADS  Article  Google Scholar 

  69. 69.

    Brown, M. et al. Weak gravitational lensing with the square kilometre array. In Advancing Astrophysics with the Square Kilometre Array (AASKA14) 23 (2015).

  70. 70.

    Raccanelli, A. et al. Cosmological measurements with forthcoming radio continuum surveys. Mon. Not. R. Astron. Soc. 424, 801–819 (2012).

    ADS  Article  Google Scholar 

  71. 71.

    Sartoris, B. et al. Next generation cosmology: constraints from the Euclid galaxy cluster survey. Mon. Not. R. Astron. Soc. 459, 1764–1780 (2016).

    ADS  Article  Google Scholar 

  72. 72.

    Dark Energy Survey Collaboration. The dark energy survey: more than dark energy — an overview. Mon. Not. R. Astron. Soc. 460, 1270–1299 (2016).

    ADS  Article  Google Scholar 

  73. 73.

    Camera, S. et al. Impact of redshift information on cosmological applications with next-generation radio surveys. Mon. Not. R. Astron. Soc. 427, 2079–2088 (2012).

    ADS  Article  Google Scholar 

  74. 74.

    Harwit, M. Cosmic Discovery. (MIT Press, Cambridge, 1984).

    Google Scholar 

  75. 75.

    Baron, D. & Poznanski, D. The weirdest SDSS galaxies: results from an outlier detection algorithm. Mon. Not. R. Astron. Soc. 465, 4530–4555 (2017).

    ADS  Article  Google Scholar 

  76. 76.

    Dabbech, A. et al. MORESANE: MOdel REconstruction by Synthesis-ANalysis Estimators. A sparse deconvolution algorithm for radio interferometric imaging. Astron. Astrophys. 576, A7 (2015).

    Article  Google Scholar 

  77. 77.

    Ball, N. M. & Brunner, R. J. Data mining and machine learning in astronomy. Int. J. Mod. Phys. D. 19, 1049–1106 (2010).

    ADS  MATH  Article  Google Scholar 

  78. 78.

    Dewdney, P. E., Hall, P. J., Schilizzi, R. T. & Lazio, T. J. L. W. The square kilometre array. Proc. IEEE 97, 1482–1496 (2009).

    ADS  Article  Google Scholar 

  79. 79.

    McKinley, B. et al. Low-frequency observations of the Moon with the Murchison widefield array. Astron. J. 145, 23 (2013).

    ADS  Article  Google Scholar 

  80. 80.

    Lazio, J., Carilli, C., Hewitt, J., Furlanetto, S. & Burns, J. The lunar radio array (LRA). Proc. SPIE 7436, 74360I (2009).

    ADS  Article  Google Scholar 

  81. 81.

    Offringa, A. R. et al. The low-frequency environment of the Murchison widefield array: radio-frequency interference analysis and mitigation. Pub. Astron. Soc. Aust. 32, e008 (2015).

    ADS  Article  Google Scholar 

  82. 82.

    Tingay, S. J. et al. The Murchison widefield array: the square kilometre array precursor at low radio frequencies. Pub. Astron. Soc. Aust. 30, e007 (2012).

    ADS  Article  Google Scholar 

  83. 83.

    van Haarlem, M. P. et al. LOFAR: The LOw-Frequency ARray. Astron. Astrophys. 556, A2 (2013).

    Article  Google Scholar 

  84. 84.

    Massardi, M. et al. The Australia Telescope 20-GHz (AT20G) survey: the bright source sample. Mon. Not. R. Astron. Soc. 384, 775–802 (2008).

    ADS  Article  Google Scholar 

  85. 85.

    Condon, J. J. et al. Resolving the radio source background: deeper understanding through confusion. Astrophys. J. 758, 23 (2012).

    ADS  Article  Google Scholar 

  86. 86.

    Zwart, J. et al. Astronomy below the survey threshold in the SKA era. In Advancing Astrophysics with the Square Kilometre Array (AASKA14) 172 (2015).

  87. 87.

    Norris, R. P. et al. Deep ATLAS radio observations of the Chandra deep field-south/spitzer wide-area infrared extragalactic field. Astron. J. 132, 2409–2423 (2006).

    ADS  Article  Google Scholar 

  88. 88.

    Sutherland, W. & Saunders, W. On the likelihood ratio for source identification. Mon. Not. R. Astron. Soc. 259, 413–420 (1992).

    ADS  Article  Google Scholar 

  89. 89.

    Fan, D., Budavari, T., Norris, R. P. & Hopkins, A. M. Matching radio catalogues with realistic geometry: application to SWIRE and ATLAS. Mon. Not. R. Astron. Soc. 451, 1299–1305 (2015).

    ADS  Article  Google Scholar 

  90. 90.

    Aniyan, A. & Thorat, K. Classifying radio galaxies with convolutional neural network. Astrophys. J. Supp. Ser. 230, 20 (2017).

    ADS  Article  Google Scholar 

  91. 91.

    Banfield, J. K. et al. Radio Galaxy Zoo: host galaxies and radio morphologies derived from visual inspection. Mon. Not. R. Astron. Soc. 453, 2326–2340 (2015).

    ADS  Article  Google Scholar 

  92. 92.

    Koribalski, B. S. The local Universe: galaxies in 3D. IAU Symp. 309, 39–46 (2015).

    ADS  Google Scholar 

  93. 93.

    Holwerda, B. W., Blyth, S.-L. & Baker, A. J. Looking at the distant Universe with the MeerKAT array (LADUMA). IAU Symp. 284, 496–499 (2012).

    ADS  Google Scholar 

  94. 94.

    Oosterloo, T. et al. Apertif — the focal-plane array system for the WSRT. In Wide Field Astronomy Technology for the Square Kilometre Array (SKADS 2009) 70 (2009).

  95. 95.

    Bonnett, C. Using neural networks to estimate redshift distributions. An application to CFHTLenS. Mon. Not. R. Astron. Soc. 449, 1043–1056 (2015).

    ADS  Article  Google Scholar 

  96. 96.

    Callingham, J. R. et al. Extragalactic peaked-spectrum radio sources at low frequencies. Astrophys. J. 836, 174 (2017).

    ADS  Article  Google Scholar 

  97. 97.

    O’Dea, C. P. The compact steep-spectrum and gigahertz peaked-spectrum radio sources. Proc. Astr. Soc. Pacific 110, 493–532 (1998).

    ADS  Article  Google Scholar 

  98. 98.

    Carilli, C. L. & Yun, M. S. The radio-to-submillimeter spectral index as a redshift indicator. Astrophys. J. 513, L13–L16 (1999).

    ADS  Article  Google Scholar 

  99. 99.

    Johnston, S. et al. Science with ASKAP. The Australian square-kilometre-array pathfinder. Exp. Astron. 22, 151–273 (2008).

    ADS  Article  Google Scholar 

  100. 100.

    Bunton, J. D. & Hay, S. G. Achievable field of view of chequerboard phased array feed. Int. Conf. Electromagnetics Adv. Applications (ICEAA) 728 (2010).

  101. 101.

    McConnell, D. et al. The Australian square kilometre array pathfinder: performance of the Boolardy engineering test array. Pub. Astron. Soc. Aust. 33, 42 (2016).

    ADS  Google Scholar 

  102. 102.

    Norris, R. P. et al. EMU: Evolutionary Map of the Universe. Pub. Astron. Soc. Aust. 28, 215–248 (2011).

    ADS  Article  Google Scholar 

  103. 103.

    Gaensler, B. M., Landecker, T. L. & Taylor, A. R. Collaboration survey science with ASKAP: polarization sky survey of the Universe’s magnetism (POSSUM). Bull. Amer. Astron. Soc. 42, 515 (2010).

    ADS  Google Scholar 

  104. 104.

    Swarup, G. Giant metrewave radio telescope (GMRT). Astr. Soc. Pacific Conf. 19, 376–380 (1991).

    ADS  Google Scholar 

  105. 105.

    Intema, H. T., Jagannathan, P., Mooley, K. P. & Frail, D. A. The GMRT 150 MHz all-sky radio survey. First alternative data release TGSS ADR1. Astron. Astrophys. 598, A78 (2017).

    ADS  Article  Google Scholar 

  106. 106.

    Heald, G. H. et al. The LOFAR multifrequency snapshot sky survey (MSSS). I. Survey description and first results. Astron. Astrophys. 582, A123 (2015).

    Article  Google Scholar 

  107. 107.

    Williams, W. L. et al. LOFAR 150-MHz observations of the Bootes field: catalogue and source counts. Mon. Not. R. Astron. Soc. 460, 2385–2412 (2016).

    ADS  Article  Google Scholar 

  108. 108.

    Röttgering, H. LOFAR and the low frequency Universe. Probing the formation and evolution of massive galaxies, AGN and clusters. In International SKA Forum 2010 (ISKAF2010) 50 (2010).

  109. 109.

    Shimwell, T. W. et al. The LOFAR two-metre sky survey. I. Survey description and preliminary data release. Astron. Astrophys. 598, A104 (2017).

    Article  Google Scholar 

  110. 110.

    Jonas, J. L. MeerKAT — The South African array with composite dishes and wide-band single pixel feeds. Proc. IEEE 97, 1522–1530 (2009).

    ADS  Article  Google Scholar 

  111. 111.

    Jarvis, M. J. & Taylor, A. R. The MeerKAT international GHz trailblazing extragalactic exploration (MIGHTEE) survey. In MeerKAT Science: On the Pathway to the SKA (MeerKAT2016) 6 (2017).

  112. 112.

    Wayth, R. B. et al. GLEAM: the galactic and extragalactic all-sky MWA survey. Pub. Astron. Soc. Aust. 32, 25 (2015).

    ADS  Google Scholar 

  113. 113.

    Hurley-Walker, N. et al. Galactic and extragalactic all-sky Murchison widefield array (GLEAM) survey. I. A low-frequency extragalactic catalogue. Mon. Not. R. Astron. Soc. 464, 1146–1167 (2017).

    ADS  Article  Google Scholar 

  114. 114.

    Napier, P. J. The EVLA project: ten times more capability for the VLA. Astr. Soc. Pacific Conf. 356, 65–71 (2006).

    ADS  Google Scholar 

  115. 115.

    Murphy, E. & VLASS Survey Science Group. The VLA sky survey. In The Many Facets of Extragalactic Radio Surveys: Towards New Scientific Challenges (EXTRA-RADSUR2015) 6 (2015).

  116. 116.

    Röttgering, H. et al. LOFAR and APERTIF surveys of the radio sky: probing shocks and magnetic fields in galaxy clusters. J. Astrop. Ast. 32, 557–566 (2011).

    ADS  Article  Google Scholar 

  117. 117.

    Andernach H. In Astronomy from Large Data Bases (eds Heck, A. & Murtagh, F.) 185–190 (ESO, Garching, 1992).

  118. 118.

    Wilson, W. E. et al. The Australia telescope compact array broad-band backend: description and first results. Mon. Not. R. Astron. Soc. 416, 832–856 (2011).

    ADS  Article  Google Scholar 

  119. 119.

    Condon, J. J. Cosmological evolution of radio sources found at 1.4 GHz. Astrophys. J. 284, 44–53 (1984).

    ADS  Article  Google Scholar 

  120. 120.

    Mitchell, K. J. & Condon, J. J. A confusion-limited 1.49-GHz VLA survey centered on alpha = 13 h 00 m 37 s, delta = +30 deg 34 arcmin. Astron. J. 90, 1957–1966 (1985).

    ADS  Article  Google Scholar 

  121. 121.

    Owen, F. N. & Morrison, G. E. The deep swire field. I. 20 cm continuum radio observations: a crowded sky. Astron. J. 136, 1889–1900 (2008).

    ADS  Article  Google Scholar 

  122. 122.

    Wilman, R. J. et al. A semi-empirical simulation of the extragalactic radio continuum sky for next generation radio telescopes. Mon. Not. R. Astron. Soc. 388, 1335–1348 (2008).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

Some of the information in Supplementary Table 1 was taken from tables kindly shared by H. Andernach117, I. Prandoni and J. Callingham. I thank the following for contributing to or commenting on an early draft of this Review: H. Andernach, J. Callingham, C. Chandler, J. Condon, E. de Blok, R. Ekers, M. Filipovic, C. Hales, G. Heald, N. Hurley-Walker, A. Kimball, R. Kothes, M. Lacy, E. Lenc, T. Muxlow, E. Murphy, T. Oosterloo, I. Prandoni, H. Röttgering, N. Seymour, V. Smolcic, R. Taylor and R. Wayth.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ray P. Norris.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary Information

Supplementary Table 1 and references

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Norris, R.P. Extragalactic radio continuum surveys and the transformation of radio astronomy. Nat Astron 1, 671–678 (2017). https://doi.org/10.1038/s41550-017-0233-y

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing