Nuclear obscuration in active galactic nuclei


The material surrounding accreting supermassive black holes connects the active galactic nucleus with its host galaxy and, besides being responsible for feeding the black hole, provides important information on the feedback that nuclear activity produces on the galaxy. In this Review, we summarize our current understanding of the close environment of accreting supermassive black holes obtained from studies of local active galactic nuclei carried out in the infrared and X-ray regimes. The structure of this circumnuclear material is complex, clumpy and dynamic, and its covering factor depends on the accretion properties of the active galactic nucleus. In the infrared, this obscuring material is a transition zone between the broad- and narrow-line regions, and, at least in some galaxies, it consists of two structures: an equatorial disk/torus and a polar component. In the X-ray regime, the obscuration is produced by multiple absorbers across various spatial scales, mostly associated with the torus and the broad-line region. In the coming decade, the new generation of infrared and X-ray facilities will greatly contribute to our understanding of the structure and physical properties of nuclear obscuration in active galactic nuclei.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Sketch of the main AGN structures seen along the equatorial and polar directions.
Fig. 2: ALMA maps of the dust continuum and molecular gas in the nucleus of NGC 106815.
Fig. 3: Sketches of two clumpy tori with different covering factors, based on the clumpy torus scheme
Fig. 4: Structure of the obscuring material in local AGNs.
Fig. 5: Evolution of the obscuring material’s covering factor with luminosity.
Fig. 6: Examples of absorption variability in the X-ray spectrum of nearby AGNs.
Fig. 7: Interferometry results from VLTI/MIDI observations of two nearby AGNs.


  1. 1.

    Kormendy, J. & Ho, L.  C. Coevolution (or not) of supermassive black holes and host galaxies. Ann. Rev. Astron. Astrophys. 51, 511–653 (2013).

    ADS  Article  Google Scholar 

  2. 2.

    Di Matteo, T., Springel, V. & Hernquist, L. Energy input from quasars regulates the growth and activity of black holes and their host galaxies. Nature 433, 604–607 (2005).

    ADS  Article  Google Scholar 

  3. 3.

    Croton, D.  J. et al. The many lives of active galactic nuclei: cooling flows, black holes and the luminosities and colours of galaxies. Mon. Not. R. Astron. Soc. 365, 11–28 (2006).

    ADS  Article  Google Scholar 

  4. 4.

    Hickox, R.  C. et al. Black hole variability and the star formation—active galactic nucleus connection: do all star-forming galaxies host an active galactic nucleus? Astrophys. J. 782, 9 (2014).

    ADS  Article  Google Scholar 

  5. 5.

    Schawinski, K., Koss, M., Berney, S. & Sartori, L.  F. Active galactic nuclei flicker: an observational estimate of the duration of black hole growth phases of ~105 yr. Mon. Not. R. Astron. Soc. 451, 2517–2523 (2015).

    ADS  Article  Google Scholar 

  6. 6.

    Haardt, F., Maraschi, L. & Ghisellini, G. A model for the X-ray and ultraviolet emission from Seyfert galaxies and galactic black holes. Astrophys. J. 432, L95–L99 (1994).

    ADS  Article  Google Scholar 

  7. 7.

    Capetti, A., Axon, D.  J., Macchetto, F., Sparks, W.  B. & Boksenberg, A. Radio outflows and the origin of the narrow-line region in Seyfert galaxies. Astrophys. J. 469, 554 (1996).

    ADS  Article  Google Scholar 

  8. 8.

    Antonucci, R.  R.  J. Optical spectropolarimetry of radio galaxies. Astrophys. J. 278, 499–520 (1984).

    ADS  Article  Google Scholar 

  9. 9.

    Antonucci, R. Unified models for active galactic nuclei and quasars. Ann. Rev. Astron. Astrophys. 31, 473–521 (1993).

    ADS  Article  Google Scholar 

  10. 10.

    Urry, C.  M. & Padovani, P. Unified schemes for radio-loud active galactic nuclei. Publ. Astron. Soc. Pac. 107, 803 (1995).

    ADS  Article  Google Scholar 

  11. 11.

    Packham, C. et al. The extended mid-infrared structure of the circinus galaxy. Astrophys. J. 618, L17–L20 (2005).

    ADS  Article  Google Scholar 

  12. 12.

    Radomski, J.  T. et al. Gemini imaging of mid-infrared emission from the nuclear region of Centaurus A. Astrophys. J. 681, 141–150 (2008).

    ADS  Article  Google Scholar 

  13. 13.

    Burtscher, L. et al. A diversity of dusty AGN tori. Data release for the VLTI/MIDI AGN Large Program and first results for 23 galaxies. Astron. Astrophys. 558, A149 (2013).

    Article  Google Scholar 

  14. 14.

    Imanishi, M., Nakanishi, K. & Izumi, T. ALMA 0.1–0.2 arcsec resolution imaging of the NGC 1068 nucleus: compact dense molecular gas emission at the putative AGN location. Astrophys. J. 822, L10 (2016).

    ADS  Article  Google Scholar 

  15. 15.

    García-Burillo, S. et al. ALMA resolves the torus of NGC 1068: continuum and molecular line emission. Astrophys. J. 823, L12 (2016).

    ADS  Article  Google Scholar 

  16. 16.

    Gallimore, J.  F. et al. High-velocity bipolar molecular emission from an AGN torus. Astrophys. J. 829, L7 (2016).

    ADS  Article  Google Scholar 

  17. 17.

    Malkan, M.  A., Gorjian, V. & Tam, R. A Hubble Space Telescope imaging survey of nearby active galactic nuclei. Astrophys. J. Supp. Ser. 117, 25–88 (1998).

    ADS  Article  Google Scholar 

  18. 18.

    Greenhill, L.  J., Gwinn, C.  R., Antonucci, R. & Barvainis, R. VLBI imaging of water maser emission from the nuclear torus of NGC 1068. Astrophys. J. 472, L21 (1996).

    ADS  Article  Google Scholar 

  19. 19.

    Masini, A. et al. NuSTAR observations of water megamaser AGN. Astron. Astrophys. 589, A59 (2016).

    Article  Google Scholar 

  20. 20.

    Zoghbi, A., Fabian, A.  C., Reynolds, C.  S. & Cackett, E.  M. Relativistic iron K X-ray reverberation in NGC 4151. Mon. Not. R. Astron. Soc. 422, 129–134 (2012).

    ADS  Article  Google Scholar 

  21. 21.

    Burlon, D. et al. Three-year Swift-BAT survey of active galactic nuclei: reconciling theory and observations? Astrophys. J. 728, 58 (2011).

    ADS  Article  Google Scholar 

  22. 22.

    Ricci, C. et al. Compton-thick accretion in the local Universe. Astrophys. J. 815, L13 (2015).

  23. 23.

    Risaliti, G. et al. Occultation measurement of the size of the X-ray-emitting region in the active galactic nucleus of NGC 1365. Astrophys. J. 659, L111–L114 (2007).

    ADS  Article  Google Scholar 

  24. 24.

    Maiolino, R. et al. ‘Comets’ orbiting a black hole. Astron. Astrophys. 517, A47 (2010).

    Article  Google Scholar 

  25. 25.

    Ramos Almeida, C. et al. The infrared nuclear emission of Seyfert galaxies on parsec scales: testing the clumpy torus models. Astrophys. J. 702, 1127–1149 (2009).

    ADS  Article  Google Scholar 

  26. 26.

    Burtscher, L. et al. On the relation of optical obscuration and X-ray absorption in Seyfert galaxies. Astron. Astrophys. 586, A28 (2016).

    Article  Google Scholar 

  27. 27.

    Awaki, H., Koyama, K., Inoue, H. & Halpern, J.  P. X-ray implications of a unified model of Seyfert galaxies. Publ. Astron. Soc. Jpn 43, 195–212 (1991).

    ADS  Google Scholar 

  28. 28.

    Matt, G. et al. Hard X-ray detection of NGC 1068 with BeppoSAX. Astron. Astrophys. 325, L13–L16 (1997).

    ADS  Google Scholar 

  29. 29.

    Bauer, F.  E. et al. NuSTAR spectroscopy of multi-component X-ray reflection from NGC 1068. Astrophys. J. 812, 116 (2015).

    ADS  Article  Google Scholar 

  30. 30.

    Panessa, F. & Bassani, L. Unabsorbed Seyfert 2 galaxies. Astron. Astrophys. 394, 435–442 (2002).

    ADS  Article  Google Scholar 

  31. 31.

    Nicastro, F. Broad emission line regions in active galactic nuclei: the link with the accretion power. Astrophys. J. 530, L65–L68 (2000).

    ADS  Article  Google Scholar 

  32. 32.

    Elitzur, M. & Ho, L.  C. On the disappearance of the broad-line region in low-luminosity active galactic nuclei. Astrophys. J. 701, L91–L94 (2009).

    ADS  Article  Google Scholar 

  33. 33.

    Merloni, A. et al. The incidence of obscuration in active galactic nuclei. Mon. Not. R. Astron. Soc. 437, 3550–3567 (2014).

    ADS  Article  Google Scholar 

  34. 34.

    Davies, R.  I. et al. Insights on the dusty torus and neutral torus from optical and X-ray obscuration in a complete volume limited hard X-ray AGN sample. Astrophys. J. 806, 127 (2015).

    ADS  Article  Google Scholar 

  35. 35.

    Kishimoto, M. et al. Exploring the inner region of type 1 AGNs with the Keck interferometer. Astron. Astrophys. 507, L57–L60 (2009).

    ADS  Article  Google Scholar 

  36. 36.

    Weigelt, G. et al. VLTI/AMBER observations of the Seyfert nucleus of NGC 3783. Astron. Astrophys. 541, L9 (2012).

    ADS  Article  Google Scholar 

  37. 37.

    Kishimoto, M. et al. The innermost dusty structure in active galactic nuclei as probed by the Keck interferometer. Astron. Astrophys. 527, A121 (2011).

    Article  Google Scholar 

  38. 38.

    Suganuma, M. et al. Reverberation measurements of the inner radius of the dust torus in nearby Seyfert 1 galaxies. Astrophys. J. 639, 46–63 (2006).

    ADS  Article  Google Scholar 

  39. 39.

    Barvainis, R. Hot dust and the near-infrared bump in the continuum spectra of quasars and active galactic nuclei. Astrophys. J. 320, 537–544 (1987).

    ADS  Article  Google Scholar 

  40. 40.

    Hönig, S.  F. et al. Parsec-scale dust emission from the polar region in the type 2 nucleus of NGC 424. Astrophys. J. 755, 149 (2012).

    ADS  Article  Google Scholar 

  41. 41.

    Hönig, S.  F. et al. Dust in the polar region as a major contributor to the infrared emission of active galactic nuclei. Astrophys. J. 771, 87 (2013).

    ADS  Article  Google Scholar 

  42. 42.

    López-Gonzaga, N., Burtscher, L., Tristram, K.  R.  W., Meisenheimer, K. & Schartmann, M. Mid-infrared interferometry of 23 AGN tori: on the significance of polar-elongated emission. Astron. Astrophys. 591, A47 (2016).

    Article  Google Scholar 

  43. 43.

    Markowitz, A.  G., Krumpe, M. & Nikutta, R. First X-ray-based statistical tests for clumpy-torus models: eclipse events from 230 years of monitoring of Seyfert AGN. Mon. Not. R. Astron. Soc. 439, 1403–1458 (2014).

    ADS  Article  Google Scholar 

  44. 44.

    Tristram, K.  R.  W. et al. The dusty torus in the Circinus galaxy: a dense disk and the torus funnel. Astron. Astrophys. 563, A82 (2014).

    Article  Google Scholar 

  45. 45.

    López-Gonzaga, N., Jaffe, W., Burtscher, L., Tristram, K.  R.  W. & Meisenheimer, K. Revealing the large nuclear dust structures in NGC 1068 with MIDI/VLTI. Astron. Astrophys. 565, A71 (2014).

    Article  Google Scholar 

  46. 46.

    Gallimore, J.  F., Baum, S.  A., O'Dea, C.  P. & Brinks, E. & Pedlar, A. H2O and OH masers as probes of the obscuring torus in NGC 1068. Astrophys. J. 462, 740 (1996).

    ADS  Article  Google Scholar 

  47. 47.

    Gallimore, J.  F., Baum, S.  A. & O'Dea, C.  P. A direct image of the obscuring disk surrounding an active galactic nucleus. Nature 388, 852–854 (1997).

    ADS  Article  Google Scholar 

  48. 48.

    Müller Sánchez, F. et al. Molecular gas streamers feeding and obscuring the active nucleus of NGC 1068. Astrophys. J. 691, 749–759 (2009).

    ADS  Article  Google Scholar 

  49. 49.

    Hicks, E.  K.  S. et al. Fueling active galactic nuclei. I. How the global characteristics of the central kiloparsec of Seyferts differ from quiescent galaxies. Astrophys. J. 768, 107 (2013).

    ADS  Article  Google Scholar 

  50. 50.

    Matt, G., Perola, G.  C. & Piro, L. The iron line and high energy bump as X-ray signatures of cold matter in Seyfert 1 galaxies. Astron. Astrophys. 247, 25–34 (1991).

    ADS  Google Scholar 

  51. 51.

    Shu, X.  W., Yaqoob, T. & Wang, J.  X. The cores of the Fe Kα lines in active galactic nuclei: an extended Chandra high energy grating sample. Astrophys. J. Suppl. Ser. 187, 581–606 (2010).

    ADS  Article  Google Scholar 

  52. 52.

    Nandra, K. & Pounds, K.  A. GINGA observations of the X-ray spectra of Seyfert galaxies. Mon. Not. R. Astron. Soc. 268, 405 (1994).

    ADS  Article  Google Scholar 

  53. 53.

    Bianchi, S. et al. A broad-line region origin for the iron Kα line in NGC 7213. Mon. Not. R. Astron. Soc. 389, L52–L56 (2008).

    ADS  Article  Google Scholar 

  54. 54.

    Gandhi, P., Hönig, S.  F. & Kishimoto, M. The dust sublimation radius as an outer envelope to the bulk of the narrow Fe Kalpha line emission in type 1 AGNs. Astrophys. J. 812, 113 (2015).

    ADS  Article  Google Scholar 

  55. 55.

    Ricci, C. et al. Iron Kα emission in type-I and type-II active galactic nuclei. Mon. Not. R. Astron. Soc. 441, 3622–3633 (2014).

    ADS  Article  Google Scholar 

  56. 56.

    Matt, G. The iron Kα Compton shoulder in transmitted and reflected spectra. Mon. Not. R. Astron. Soc. 337, 147–150 (2002).

    ADS  Article  Google Scholar 

  57. 57.

    Alonso-Herrero, A., Quillen, A.  C., Rieke, G.  H., Ivanov, V.  D. & Efstathiou, A. Spectral energy distributions of Seyfert nuclei. Astron. J. 126, 81–100 (2003).

    ADS  Article  Google Scholar 

  58. 58.

    Prieto, M.  A. et al. The spectral energy distribution of the central parsecs of the nearest AGN. Mon. Not. R. Astron. Soc 402, 724–744 (2010).

    ADS  Article  Google Scholar 

  59. 59.

    Asmus, D., Hönig, S.  F., Gandhi, P., Smette, A. & Duschl, W.  J. The subarcsecond mid-infrared view of local active galactic nuclei. I. The N- and Q-band imaging atlas. Mon. Not. R. Astron. Soc. 439, 1648–1679 (2014).

    ADS  Article  Google Scholar 

  60. 60.

    Levenson, N.  A. et al. Isotropic mid-infrared emission from the central 100 pc of active galaxies. Astrophys. J. 703, 390–398 (2009).

    ADS  Article  Google Scholar 

  61. 61.

    Ramos Almeida, C. et al. Testing the unification model for active galactic nuclei in the infrared: are the obscuring tori of type 1 and 2 Seyferts different? Astrophys. J. 731, 92 (2011).

    ADS  Article  Google Scholar 

  62. 62.

    Pier, E.  A. & Krolik, J.  H. Infrared spectra of obscuring dust tori around active galactic nuclei. I. Calculational method and basic trends. Astrophys. J. 401, 99–109 (1992).

    ADS  Article  Google Scholar 

  63. 63.

    Pier, E.  A. & Krolik, J.  H. Infrared spectra of obscuring dust tori around active galactic nuclei. II. Comparison with observations. Astrophys. J. 418, 673 (1993).

    ADS  Article  Google Scholar 

  64. 64.

    Hönig, S.  F., Leipski, C., Antonucci, R. & Haas, M. Quantifying the anisotropy in the infrared emission of powerful active galactic nuclei. Astrophys. J. 736, 26 (2011).

    ADS  Article  Google Scholar 

  65. 65.

    Krabbe, A., Böker, T. & Maiolino, R. N-band imaging of Seyfert nuclei and the mid-infrared-X-ray correlation. Astrophys. J. 557, 626–636 (2001).

    ADS  Article  Google Scholar 

  66. 66.

    Lutz, D., Maiolino, R., Spoon, H.  W.  W. & Moorwood, A.  F.  M. The relation between AGN hard X-ray emission and mid-infrared continuum from ISO spectra: scatter and unification aspects. Astron. Astrophys. 418, 465–473 (2004).

    ADS  Article  Google Scholar 

  67. 67.

    Asmus, D., Gandhi, P., Hönig, S.  F., Smette, A. & Duschl, W.  J. The subarcsecond mid-infrared view of local active galactic nuclei. II. The mid-infrared-X-ray correlation. Mon. Not. R. Astron. Soc 454, 766–803 (2015).

    ADS  Article  Google Scholar 

  68. 68.

    Roche, P.  F., Aitken, D.  K., Smith, C.  H. & Ward, M.  J. An atlas of mid-infrared spectra of galaxy nuclei. Mon. Not. R. Astron. Soc. 248, 606–629 (1991).

    ADS  Article  Google Scholar 

  69. 69.

    Mason, R.  E. et al. The origin of the silicate emission features in the Seyfert 2 galaxy NGC 2110. Astrophys. J. 693, L136–L140 (2009).

    ADS  Article  Google Scholar 

  70. 70.

    Shi, Y. et al. 9.7 µm silicate features in active galactic nuclei: new insights into unification models. Astrophys. J. 653, 127–136 (2006).

    ADS  Article  Google Scholar 

  71. 71.

    Roche, P.  F. et al. Mid-infrared, spatially resolved spectroscopy of the nucleus of the Circinus galaxy. Mon. Not. R. Astron. Soc. 367, 1689–1698 (2006).

    ADS  Article  Google Scholar 

  72. 72.

    Alonso-Herrero, A. et al. A mid-infrared spectroscopic atlas of local active galactic nuclei on sub-arcsecond resolution using GTC/CanariCam. Mon. Not. R. Astron. Soc. 455, 563–583 (2016).

    ADS  Article  Google Scholar 

  73. 73.

    Maiolino, R., Marconi, A. & Oliva, E. Dust in active nuclei. II. Powder or gravel? Astron. Astrophys. 365, 37–48 (2001).

    ADS  Article  Google Scholar 

  74. 74.

    Krolik, J.  H. & Begelman, M.  C. Molecular tori in Seyfert galaxies — feeding the monster and hiding it. Astrophys. J. 329, 702–711 (1988).

    ADS  Article  Google Scholar 

  75. 75.

    Marinucci, A. et al. NuSTAR catches the unveiling nucleus of NGC 1068. Mon. Not. R. Astron. Soc. 456, L94–L98 (2016).

    ADS  Article  Google Scholar 

  76. 76.

    Schartmann, M. et al. Three-dimensional radiative transfer models of clumpy tori in Seyfert galaxies. Astron. Astrophys. 482, 67–80 (2008).

    ADS  Article  Google Scholar 

  77. 77.

    Wada, K. & Norman, C.  A. Obscuring material around Seyfert nuclei with starbursts. Astrophys. J. 566, L21–L24 (2002).

    ADS  Article  Google Scholar 

  78. 78.

    Wada, K. Radiation-driven fountain and origin of torus around active galactic nuclei. Astrophys. J. 758, 66 (2012).

    ADS  Article  Google Scholar 

  79. 79.

    Nenkova, M., Sirocky, M.  M., Ivezić, Ž. & Elitzur, M. AGN dusty tori. I. Handling of clumpy media. Astrophys. J. 685, 147–159 (2008).

    ADS  Article  Google Scholar 

  80. 80.

    Nenkova, M., Sirocky, M.  M., Nikutta, R., Ivezić, Ž. & Elitzur, M. AGN dusty tori. II. Observational implications of clumpiness. Astrophys. J. 685, 160–180 (2008).

    ADS  Article  Google Scholar 

  81. 81.

    Hönig, S.  F. et al. The dusty heart of nearby active galaxies. I. High-spatial resolution mid-IR spectro-photometry of Seyfert galaxies. Astron. Astrophys. 515, A23 (2010).

    Article  Google Scholar 

  82. 82.

    Stalevski, M., Fritz, J., Baes, M., Nakos, T. & Popović, L.  Č. 3D radiative transfer modelling of the dusty tori around active galactic nuclei as a clumpy two-phase medium. Mon. Not. R. Astron. Soc. 420, 2756–2772 (2012).

    ADS  Article  Google Scholar 

  83. 83.

    Siebenmorgen, R., Heymann, F. & Efstathiou, A. Self-consistent two-phase AGN torus models. SED library for observers. Astron. Astrophys. 583, A120 (2015).

    ADS  Article  Google Scholar 

  84. 84.

    Feltre, A., Hatziminaoglou, E., Fritz, J. & Franceschini, A. Smooth and clumpy dust distributions in AGN: a direct comparison of two commonly explored infrared emission models. Mon. Not. R. Astron. Soc. 426, 120–127 (2012).

    ADS  Article  Google Scholar 

  85. 85.

    Ichikawa, K. et al. The differences in the torus geometry between hidden and non-hidden broad line active galactic nuclei. Astrophys. J. 803, 57 (2015).

    ADS  Article  Google Scholar 

  86. 86.

    Mor, R., Netzer, H. & Elitzur, M. Dusty structure around type-I active galactic nuclei: clumpy torus narrow-line region and near-nucleus hot dust. Astrophys. J. 705, 298–313 (2009).

    ADS  Article  Google Scholar 

  87. 87.

    Alonso-Herrero, A. et al. Torus and active galactic nucleus properties of nearby Seyfert galaxies: results from fitting infrared spectral energy distributions and spectroscopy. Astrophys. J. 736, 82 (2011).

    ADS  Article  Google Scholar 

  88. 88.

    Lira, P. et al. Modeling the nuclear infrared spectral energy distribution of type II active galactic nuclei. Astrophys. J. 764, 159 (2013).

    ADS  Article  Google Scholar 

  89. 89.

    Ramos Almeida, C. et al. Investigating the sensitivity of observed spectral energy distributions to clumpy torus properties in Seyfert galaxies. Mon. Not. R. Astron. Soc. 439, 3847–3859 (2014).

    ADS  Article  Google Scholar 

  90. 90.

    Roseboom, I.  G. et al. IR-derived covering factors for a large sample of quasars from WISE-UKIDSS-SDSS. Mon. Not. R. Astron. Soc. 429, 1494–1501 (2013).

    ADS  Article  Google Scholar 

  91. 91.

    Hönig, S.  F. & Kishimoto, M. Dusty winds in active galactic nuclei: reconciling observations with models. Astrophys. J. 838, L20 (2017).

    ADS  Article  Google Scholar 

  92. 92.

    González-Martín, O. et al. Nuclear obscuration in LINERs. Clues from Spitzer/IRS spectra on the Compton thickness and the existence of the dusty torus. Astron. Astrophys. 578, A74 (2015).

    Article  Google Scholar 

  93. 93.

    Ikeda, S., Awaki, H. & Terashima, Y. Study on X-ray spectra of obscured active galactic nuclei based on Monte Carlo simulation — an interpretation of observed wide-band spectra. Astrophys. J. 692, 608–617 (2009).

    ADS  Article  Google Scholar 

  94. 94.

    Murphy, K.  D. & Yaqoob, T. An X-ray spectral model for Compton-thick toroidal reprocessors. Mon. Not. R. Astron. Soc. 397, 1549–1562 (2009).

    ADS  Article  Google Scholar 

  95. 95.

    Brightman, M. & Nandra, K. An XMM-Newton spectral survey of 12 µm selected galaxies. I. X-ray data. Mon. Not. R. Astron. Soc. 413, 1206–1235 (2011).

    ADS  Article  Google Scholar 

  96. 96.

    Liu, Y. & Li, X. An X-ray spectral model for clumpy tori in active galactic nuclei. Astrophys. J. 787, 52 (2014).

    ADS  Article  Google Scholar 

  97. 97.

    Furui, S. et al. X-ray spectral model of reprocess by smooth and clumpy molecular tori in active galactic nuclei with the framework MONACO. Astrophys. J. 818, 164 (2016).

    ADS  Article  Google Scholar 

  98. 98.

    Baloković, M. et al. The NuSTAR view of nearby Compton-thick active galactic nuclei: the cases of NGC 424, NGC 1320, and IC 2560. Astrophys. J. 794, 111 (2014).

    ADS  Article  Google Scholar 

  99. 99.

    Annuar, A. et al. NuSTAR observations of the Compton-thick active galactic nucleus and ultraluminous X-ray source candidate in NGC 5643. Astrophys. J. 815, 36 (2015).

    ADS  Article  Google Scholar 

  100. 100.

    Koss, M.  J. et al. A new population of Compton-thick AGNs identified using the spectral curvature above 10 keV. Astrophys. J. 825, 85 (2016).

    ADS  Article  Google Scholar 

  101. 101.

    Yaqoob, T. The nature of the Compton-thick X-ray reprocessor in NGC 4945. Mon. Not. R. Astron. Soc. 423, 3360–3396 (2012).

    ADS  Article  Google Scholar 

  102. 102.

    Risaliti, G., Maiolino, R. & Salvati, M. The distribution of absorbing column densities among Seyfert 2 galaxies. Astrophys. J. 522, 157–164 (1999).

    ADS  Article  Google Scholar 

  103. 103.

    Ueda, Y., Akiyama, M., Hasinger, G., Miyaji, T. & Watson, M.  G. Toward the standard population synthesis model of the X-ray background: evolution of X-ray luminosity and absorption functions of active galactic nuclei including Compton-thick populations. Astrophys. J. 786, 104 (2014).

    ADS  Article  Google Scholar 

  104. 104.

    Brightman, M. et al. Compton thick active galactic nuclei in Chandra surveys. Mon. Not. R. Astron. Soc 443, 1999–2017 (2014).

    ADS  Article  Google Scholar 

  105. 105.

    Buchner, J. et al. Obscuration-dependent evolution of active galactic nuclei. Astrophys. J. 802, 89 (2015).

    ADS  Article  Google Scholar 

  106. 106.

    Lanzuisi, G. et al. Compton thick AGN in the XMM-COSMOS survey. Astron. Astrophys. 573, A137 (2015).

    Article  Google Scholar 

  107. 107.

    La Franca, F. et al. The HELLAS2XMM survey. VII. The hard X-ray luminosity function of AGNs up to z = 4: more absorbed AGNs at low luminosities and high redshifts. Astrophys. J. 635, 864–879 (2005).

    ADS  Article  Google Scholar 

  108. 108.

    Akylas, A., Georgantopoulos, I., Georgakakis, A., Kitsionas, S. & Hatziminaoglou, E. XMM-Newton and Chandra measurements of the AGN intrinsic absorption: dependence on luminosity and redshift. Astron. Astrophys. 459, 693–701 (2006).

    ADS  Article  Google Scholar 

  109. 109.

    Brightman, M. et al. Determining the covering factor of Compton-thick active galactic nuclei with NuSTAR. Astrophys. J. 805, 41 (2015).

    ADS  Article  Google Scholar 

  110. 110.

    Maiolino, R. et al. Dust covering factor, silicate emission, and star formation in luminous QSOs. Astron. Astrophys. 468, 979–992 (2007).

    ADS  Article  Google Scholar 

  111. 111.

    Treister, E., Krolik, J.  H. & Dullemond, C. Measuring the fraction of obscured quasars by the infrared luminosity of unobscured quasars. Astrophys. J. 679, 140–148 (2008).

    ADS  Article  Google Scholar 

  112. 112.

    Lusso, E. et al. The obscured fraction of active galactic nuclei in the XMM-COSMOS survey: a spectral energy distribution perspective. Astrophys. J. 777, 86 (2013).

    ADS  Article  Google Scholar 

  113. 113.

    Stalevski, M. et al. The dust covering factor in active galactic nuclei. Mon. Not. R. Astron. Soc. 458, 2288–2302 (2016).

    ADS  Article  Google Scholar 

  114. 114.

    Sazonov, S., Churazov, E. & Krivonos, R. Does the obscured AGN fraction really depend on luminosity? Mon. Not. R. Astron. Soc. 454, 1202–1220 (2015).

    ADS  Article  Google Scholar 

  115. 115.

    Iwasawa, K. & Taniguchi, Y. The X-ray Baldwin effect. Astrophys. J. 413, L15–L18 (1993).

    ADS  Article  Google Scholar 

  116. 116.

    Bianchi, S., Guainazzi, M., Matt, G. & Fonseca Bonilla, N. On the Iwasawa–Taniguchi effect of radio-quiet AGN. Astron. Astrophys. 467, L19–L22 (2007).

    ADS  Article  Google Scholar 

  117. 117.

    Ricci, C. et al. Luminosity-dependent unification of active galactic nuclei and the X-ray Baldwin effect. Astron. Astrophys. 553, A29 (2013).

    Article  Google Scholar 

  118. 118.

    Fabian, A.  C., Celotti, A. & Erlund, M.  C. Radiative pressure feedback by a quasar in a galactic bulge. Mon. Not. R. Astron. Soc. 373, L16–L20 (2006).

    ADS  Article  Google Scholar 

  119. 119.

    Assef, R.  J. et al. Half of the most luminous quasars may be obscured: investigating the nature of WISE-selected hot dust-obscured galaxies. Astrophys. J. 804, 27 (2015).

    ADS  Article  Google Scholar 

  120. 120.

    Elitzur, M. & Shlosman, I. The AGN-obscuring torus: the end of the ‘doughnut’ paradigm? Astrophys. J. 648, L101–L104 (2006).

    ADS  Article  Google Scholar 

  121. 121.

    Kawamuro, T., Ueda, Y., Tazaki, F., Terashima, Y. & Mushotzky, R. Study of Swift/Bat selected low-luminosity active galactic nuclei observed with Suzaku. Astrophys. J. 831, 37 (2016).

    ADS  Article  Google Scholar 

  122. 122.

    Mateos, S. et al. X-ray absorption, nuclear infrared emission, and dust covering factors of AGNs: testing unification schemes. Astrophys. J. 819, 166 (2016).

    ADS  Article  Google Scholar 

  123. 123.

    Elitzur, M. On the unification of active galactic nuclei. Astrophys. J. 747, L33 (2012).

    ADS  Article  Google Scholar 

  124. 124.

    Marin, F. & Antonucci, R. A robust derivation of the tight relationship of radio core dominance to inclination angle in high redshift 3CRR sources. Astrophys. J. 830, 82 (2016).

    ADS  Article  Google Scholar 

  125. 125.

    Brightman, M. Determining the torus covering factor in Compton-thick AGN with NuSTAR. In Proc. TORUS2015 (eds Gandhi, P. & Hoenig, S. F.) (2015).

  126. 126.

    Guainazzi, M., Matt, G., Fiore, F. & Perola, G.  C. The Phoenix galaxy: UGC 4203 re-birth from its ashes? Astron. Astrophys. 388, 787–792 (2002).

    ADS  Article  Google Scholar 

  127. 127.

    Piconcelli, E., Bianchi, S., Guainazzi, M., Fiore, F. & Chiaberge, M. XMM-Newton broad-band observations of NGC 7582: N H variations and fading out of the active nucleus. Astron. Astrophys. 466, 855–863 (2007).

    ADS  Article  Google Scholar 

  128. 128.

    Risaliti, G. et al. X-ray absorption by broad-line region clouds in Mrk 766. Mon. Not. R. Astron. Soc 410, 1027–1035 (2011).

    ADS  Article  Google Scholar 

  129. 129.

    Vazquez, B. et al. Spitzer Space Telescope measurements of dust reverberation lags in the Seyfert 1 galaxy NGC 6418. Astrophys. J. 801, 127 (2015).

    ADS  Article  Google Scholar 

  130. 130.

    Tristram, K.  R.  W. et al. Parsec-scale dust distributions in Seyfert galaxies. Results of the MIDI AGN snapshot survey. Astron. Astrophys. 502, 67–84 (2009).

    ADS  Article  Google Scholar 

  131. 131.

    Wada, K., Schartmann, M. & Meijerink, R. Multi-phase nature of a radiation-driven fountain with nuclear starburst in a low-mass active galactic nucleus. Astrophys. J. 828, L19 (2016).

    ADS  Article  Google Scholar 

  132. 132.

    Cameron, M. et al. Subarcsecond mid-infrared imaging of warm dust in the narrow-line region of NGC 1068. Astrophys. J. 419, 136 (1993).

    ADS  Article  Google Scholar 

  133. 133.

    Bock, J.  J. et al. High spatial resolution imaging of NGC 1068 in the mid-infrared. Astron. J. 120, 2904–2919 (2000).

    ADS  Article  Google Scholar 

  134. 134.

    Mason, R.  E. et al. Spatially resolved mid-infrared spectroscopy of NGC 1068: the nature and distribution of the nuclear material. Astrophys. J. 640, 612–624 (2006).

    ADS  Article  Google Scholar 

  135. 135.

    Asmus, D., Hönig, S.  F. & Gandhi, P. The subarcsecond mid-infrared view of local active galactic nuclei. III. Polar dust emission. Astrophys. J. 822, 109 (2016).

    ADS  Article  Google Scholar 

  136. 136.

    Young, A.  J., Wilson, A.  S. & Shopbell, P.  L. A Chandra X-ray study of NGC 1068. I. Observations of extended emission. Astrophys. J. 556, 6–23 (2001).

    ADS  Article  Google Scholar 

  137. 137.

    Bianchi, S., Guainazzi, M. & Chiaberge, M. The soft X-ray/NLR connection: a single photoionized medium? Astron. Astrophys. 448, 499–511 (2006).

    ADS  Article  Google Scholar 

  138. 138.

    Gandhi, P. et al. Resolving the mid-infrared cores of local Seyferts. Astron. Astrophys. 502, 457–472 (2009).

    ADS  Article  Google Scholar 

  139. 139.

    Ichikawa, K. et al. Mid- and far-infrared properties of a complete sample of local active galactic nuclei. Astrophys. J. 754, 45 (2012).

    ADS  Article  Google Scholar 

  140. 140.

    Singh, K. P. et al. ASTROSAT mission. In Proc. SPIE Vol. 9144 (eds Takahashi, T., den Herder, J.-W. A. & Bautz, M.), 91441S (2014).

  141. 141.

    Merloni, A. et al. eROSITA science book: Mapping the structure of the energetic Universe. Preprint at (2012).

  142. 142.

    Nandra, K. et al. The hot and energetic Universe: a white paper presenting the science theme motivating the Athena+ mission. Preprint at (2013).

  143. 143.

    Odaka, H., Yoneda, H., Takahashi, T. & Fabian, A. Sensitivity of the Fe Kα Compton shoulder to the geometry and variability of the X-ray illumination of cosmic objects. Mon. Not. R. Astron. Soc. 462, 2366–2381 (2016).

    ADS  Article  Google Scholar 

  144. 144.

    Weisskopf, M. C. et al. The Imaging X-ray Polarimetry Explorer (IXPE). In Proc. SPIE Vol. 9905, (eds den Herder, J.-W. A., Takahashi, T. & Bautz, M.) 990517 (2016).

  145. 145.

    Eisenhauer, F. et al. GRAVITY: observing the Universe in motion. The Messenger 143, 16–24 (2011).

    Google Scholar 

  146. 146.

    Lopez, B. et al. An overview of the MATISSE instrument — science, concept and current status. The Messenger 157, 5–12 (2014).

    ADS  Google Scholar 

  147. 147.

    Gardner, J.  P. et al. The James Webb Space Telescope. Space Sci. Rev. 123, 485–606 (2006).

    ADS  Article  Google Scholar 

Download references


The authors acknowledge A. Alonso-Herrero, P. Gandhi, N. A. Levenson and M. Stalevski for useful comments that helped to improve this Review. C.R.A. acknowledges the Ramón y Cajal Program of the Spanish Ministry of Economy and Competitiveness through project RYC-2014-15779 and the Spanish Plan Nacional de Astronomía y Astrofísica under grant AYA2016-76682-C3-2-P. C.R. acknowledges financial support from the China-CONICYT fellowship programme, FONDECYT 1141218 and Basal-CATA PFB–06/2007. This work is sponsored by the Chinese Academy of Sciences (CAS), through a grant to the CAS South America Center for Astronomy (CASSACA) in Santiago, Chile.

Author information




The authors’ order is purely alphabetical as they both contributed equally to this work. They decided on the concept of the Review and provided/adapted the figures. C.R. and C.R.A. wrote the X-ray and infrared parts of the text, respectively, and worked together to put them in common.

Corresponding author

Correspondence to Cristina Ramos Almeida.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Almeida, C.R., Ricci, C. Nuclear obscuration in active galactic nuclei. Nat Astron 1, 679–689 (2017).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing