Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Tests for the existence of black holes through gravitational wave echoes


The existence of black holes and spacetime singularities is a fundamental issue in science. Despite this, observations supporting their existence are scarce, and their interpretation is unclear. In this Perspective we outline the case for black holes that has been made over the past few decades, and provide an overview of how well observations adjust to this paradigm. Unsurprisingly, we conclude that observational proof for black holes is, by definition, impossible to obtain. However, just like Popper’s black swan, alternatives can be ruled out or confirmed to exist with a single observation. These observations are within reach. In the coming years and decades, we will enter an era of precision gravitational-wave physics with more sensitive detectors. Just as accelerators have required larger and larger energies to probe smaller and smaller scales, more sensitive gravitational-wave detectors will probe regions closer and closer to the horizon, potentially reaching Planck scales and beyond. What may be there, lurking?

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Schematic classification of dark compact objects.
Fig. 2: Ringdown waveforms from black holes (black line) and ClePhOs (red line).


  1. 1.

    Mazur, P. O. & Mottola, E. Gravitational vacuum condensate stars. Proc. Natl Acad. Sci. USA 101, 9545–9550 (2004).

    ADS  Article  Google Scholar 

  2. 2.

    Mathur, S. D. The fuzzball proposal for black holes: An elementary review. Fortsch. Phys. 53, 793–827 (2005).

    ADS  MathSciNet  Article  MATH  Google Scholar 

  3. 3.

    Mathur, S. D. Fuzzballs and the information paradox: a summary and conjectures. Preprint at (2008).

  4. 4.

    Unruh, W. G. & Wald, R. M. Information loss. Preprint at (2017).

  5. 5.

    Broderick, A. E., Johannsen, T., Loeb, A. & Psaltis, D. Testing the no-hair theorem with event horizon telescope observations of Sagittarius A*. Astrophys. J. 784, 7 (2014).

    ADS  Article  Google Scholar 

  6. 6.

    Goddi, C. et al. BlackHoleCam: Fundamental physics of the Galactic center. Int. J. Mod. Phys. D 26, 1730001 (2017).

    ADS  Article  Google Scholar 

  7. 7.

    Ferrari, V. & Mashhoon, B. New approach to the quasinormal modes of a black hole. Phys. Rev. D 30, 295–304 (1984).

    ADS  MathSciNet  Article  Google Scholar 

  8. 8.

    Cardoso, V., Miranda, A. S., Berti, E., Witek, H. & Zanchin, V. T. Geodesic stability, Lyapunov exponents and quasinormal modes. Phys. Rev. D 79, 064016 (2009).

    ADS  MathSciNet  Article  Google Scholar 

  9. 9.

    Berti, E., Cardoso, V. & Starinets, A. O. Quasinormal modes of black holes and black branes. Class. Quant. Grav 26, 163001 (2009).

    ADS  MathSciNet  Article  MATH  Google Scholar 

  10. 10.

    Cardoso, V., Franzin, E. & Pani, P. Is the gravitational-wave ringdown a probe of the event horizon? Phys. Rev. Lett. 116, 171101 (2016).

    ADS  Article  Google Scholar 

  11. 11.

    Cardoso, V., Hopper, S., Macedo, C. F. B., Palenzuela, C. & Pani, P. Gravitational-wave signatures of exotic compact objects and of quantum corrections at the horizon scale. Phys. Rev. D 94, 084031 (2016).

    ADS  Article  Google Scholar 

  12. 12.

    Buchdahl, H. A. General relativistic fluid spheres. Phys. Rev 116, 1027–1034 (1959).

    ADS  MathSciNet  Article  MATH  Google Scholar 

  13. 13.

    Kaup, D. J. & Klein-Gordon, G. Phys. Rev 172, 1331–1342 (1968).

    ADS  Article  Google Scholar 

  14. 14.

    Ruffini, R. & Bonazzola, S. Systems of self-gravitating particles in general relativity and the concept of an equation of state. Phys. Rev. 187, 1767–1783 (1969).

    ADS  Article  Google Scholar 

  15. 15.

    Seidel, E. & Suen, W. M. Oscillating soliton stars. Phys. Rev. Lett. 66, 1659–1662 (1991).

    ADS  Article  Google Scholar 

  16. 16.

    Brito, R., Cardoso, V. & Okawa, H. Accretion of dark matter by stars. Phys. Rev. Lett. 115, 111301 (2015).

    ADS  Article  Google Scholar 

  17. 17.

    Liebling, S. L. & Palenzuela, C. Dynamical boson stars. Living Rev. Rel 15, 6 (2012).

    Article  MATH  Google Scholar 

  18. 18.

    Hui, L., Ostriker, J. P., Tremaine, S. & Witten, E. Ultralight scalars as cosmological dark matter. Phys. Rev. D 95, 043541 (2017).

    ADS  Article  Google Scholar 

  19. 19.

    Damour, T. & Solodukhin, S. N. Wormholes as black hole foils. Phys. Rev. D 76, 024016 (2007).

    ADS  MathSciNet  Article  MATH  Google Scholar 

  20. 20.

    Chowdhury, B. D. & Mathur, S. D. Radiation from the non-extremal fuzzball. Class. Quant. Grav 25, 135005 (2008).

    ADS  MathSciNet  Article  MATH  Google Scholar 

  21. 21.

    Mottola, E. & Vaulin, R. Macroscopic effects of the quantum trace anomaly. Phys. Rev. D 74, 064004 (2006).

    ADS  Article  Google Scholar 

  22. 22.

    Barcelo, C., Liberati, S., Sonego, S. & Visser, M. Black stars, not holes. Sci. Am. 301, 38–45 (2009).

    Article  Google Scholar 

  23. 23.

    Barcelo, C., Liberati, S., Sonego, S. & Visser, M. Fate of gravitational collapse in semiclassical gravity. Phys. Rev. D 77, 044032 (2008).

    ADS  Article  Google Scholar 

  24. 24.

    Gimon, E. G. & Horava, P. Astrophysical violations of the Kerr bound as a possible signature of string theory. Phys. Lett. B 672, 299–302 (2009).

    ADS  MathSciNet  Article  Google Scholar 

  25. 25.

    Brustein, R. & Medved, A. J. M. Black holes as collapsed polymers. Fortsch. Phys 65, 0114 (2017).

    MathSciNet  MATH  Google Scholar 

  26. 26.

    Brustein, R., Medved, A. J. M. & Yagi, K. Discovering the interior of black holes. Preprint at (2017).

  27. 27.

    Holdom, B. & Ren, J. Not quite a black hole. Phys. Rev. D 95, 084034 (2017).

    ADS  Article  Google Scholar 

  28. 28.

    Seidel, E. & Suen, W. M. Formation of solitonic stars through gravitational cooling. Phys. Rev. Lett. 72, 2516–2519 (1994).

    ADS  Article  Google Scholar 

  29. 29.

    Brito, R., Cardoso, V., Macedo, C. F. B., Okawa, H. & Palenzuela, C. Interaction between bosonic dark matter and stars. Phys. Rev. D 93, 044045 (2016).

    ADS  Article  Google Scholar 

  30. 30.

    Keir, J. Slowly decaying waves on spherically symmetric spacetimes and ultracompact neutron stars. Class. Quant. Grav 33, 135009 (2016).

    ADS  MathSciNet  Article  MATH  Google Scholar 

  31. 31.

    Cardoso, V., Crispino, L. C. B., Macedo, C. F. B., Okawa, H. & Pani, P. Light rings as observational evidence for event horizons: Long-lived modes, ergoregions and nonlinear instabilities of ultracompact objects. Phys. Rev. D 90, 044069 (2014).

    ADS  Article  Google Scholar 

  32. 32.

    Friedman, J. L. Generic instability of rotating relativistic stars. Commun. Math. Phys. 62, 247–278 (1978).

    ADS  Article  MATH  Google Scholar 

  33. 33.

    Moschidis, G. A proof of Friedman’s ergosphere instability for scalar waves. Preprint at (2016).

  34. 34.

    Cardoso, V., Pani, P., Cadoni, M. & Cavaglia, M. Ergoregion instability of ultracompact astrophysical objects. Phys. Rev. D 77, 124044 (2008).

    ADS  Article  Google Scholar 

  35. 35.

    Maggio, E., Pani, P. & Ferrari, V. Exotic compact objects and how to quench their ergoregion instability. Preprint at (2017).

  36. 36.

    Fritz, J. Blow-up for quasi-linear wave equations in three space dimensions. Commun. Pure Applied Math 34, 29–51 (1981).

    Article  MATH  Google Scholar 

  37. 37.

    Abbott, B. P. et al. Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 116, 061102 (2016).

    ADS  MathSciNet  Article  Google Scholar 

  38. 38.

    Abbott, B. P. et al. Tests of general relativity with GW150914. Phys. Rev. Lett. 116, 221101 (2016).

    ADS  Article  Google Scholar 

  39. 39.

    Yunes, N. & Siemens, X. Gravitational-wave tests of general relativity with ground-based detectors and pulsar timing-arrays. Living Rev. Rel 16, 1–124 (2013).

    Article  Google Scholar 

  40. 40.

    Barausse, E., Cardoso, V. & Pani, P. Can environmental effects spoil precision gravitational-wave astrophysics? Phys. Rev. D 89, 104059 (2014).

    ADS  Article  Google Scholar 

  41. 41.

    Berti, E. et al. Testing general relativity with present and future astrophysical observations. Class. Quant. Grav 32, 243001 (2015).

    ADS  Article  Google Scholar 

  42. 42.

    Yunes, N., Yagi, K. & Pretorius, F. Theoretical physics implications of the binary black-hole mergers GW150914 and GW151226. Phys. Rev. D 94, 084002 (2016).

    ADS  Article  Google Scholar 

  43. 43.

    Maselli, A. et al. Probing Planckian corrections at the horizon scale with LISA binaries. Preprint at (2017).

  44. 44.

    Abbott, B. P. et al. GW151226: Observation of gravitational waves from a 22-solar-mass binary black hole coalescence. Phys. Rev. Lett. 116, 241103 (2016).

    ADS  Article  Google Scholar 

  45. 45.

    Buonanno, A., Cook, G. B. & Pretorius, F. Inspiral, merger and ring-down of equal-mass black-hole binaries. Phys. Rev. D 75, 124018 (2007).

    ADS  MathSciNet  Article  Google Scholar 

  46. 46.

    Berti, E. et al. Inspiral, merger and ringdown of unequal mass black hole binaries: A multipolar analysis. Phys. Rev. D 76, 064034 (2007).

    ADS  Article  Google Scholar 

  47. 47.

    Sperhake, U., Berti, E. & Cardoso, V. Numerical simulations of black-hole binaries and gravitational wave emission. C. R. Phys. 14, 306–317 (2013).

    ADS  Article  Google Scholar 

  48. 48.

    Blanchet, L. Gravitational radiation from post-newtonian sources and inspiralling compact binaries. Living Rev. Rel 17, 2 (2014).

    Article  MATH  Google Scholar 

  49. 49.

    Price, R. H. & Khanna, G. Gravitational wave sources: reflections and echoes. Preprint at (2017).

  50. 50.

    Nakano, H., Sago, N., Tagoshi, H. & Tanaka, T. Black hole ringdown echoes and howls. Prog. Theor. Exp. Phys. 2017, 071E01 (2017).

  51. 51.

    Abbott, B. P. et al. Search for gravitational wave ringdowns from perturbed black holes in LIGO S4 data. Phys. Rev. D 80, 062001 (2009).

    ADS  Article  Google Scholar 

  52. 52.

    Berti, E., Sesana, A., Barausse, E., Cardoso, V. & Belczynski, K. Spectroscopy of Kerr black holes with Earth- and space-based interferometers. Phys. Rev. Lett. 117, 101102 (2016).

    ADS  Article  Google Scholar 

  53. 53.

    Amaro-Seoane, P. et al. Laser interferometer space antenna. Preprint at (2017).

  54. 54.

    Punturo, M. et al. The Einstein telescope: A third-generation gravitational wave observatory. Class. Quant. Grav 27, 194002 (2010).

    ADS  Article  Google Scholar 

  55. 55.

    LIGO Scientific Collaboration. LIGO Instrument Science White Paper (LIGO, 2015);

  56. 56.

    Abedi, J., Dykaar, H. & Afshordi, N. Echoes from the abyss: Evidence for Planck-scale structure at black hole horizons. Preprint at (2016).

  57. 57.

    Ashton, G. et al. Comments on: ‘Echoes from the abyss: Evidence for Planck-scale structure at black hole horizons’. Preprint at (2016).

  58. 58.

    Abedi, J., Dykaar, H. & Afshordi, N. Echoes from the abyss: The holiday edition! Preprint at (2017).

  59. 59.

    Mark, Z., Zimmerman, A., Du, S. M. & Chen, Y. A recipe for echoes from exotic compact objects. Preprint at (2017).

  60. 60.

    Mottola, E. Scalar gravitational waves in the effective theory of gravity. J. High Energy Phys. 2017, 43 (2017).

  61. 61.

    Pani, P., Berti, E., Cardoso, V., Chen, Y. & Norte, R. Gravitational-wave signatures of the absence of an event horizon. II. Extreme mass ratio inspirals in the spacetime of a thin-shell gravastar. Phys. Rev. D 81, 084011 (2010).

    Google Scholar 

  62. 62.

    Macedo, C. F. B., Pani, P., Cardoso, V. & Crispino, L. C. B. Into the lair: Gravitational-wave signatures of dark matter. Astrophys. J. 774, 48 (2013).

    ADS  Article  Google Scholar 

  63. 63.

    Macedo, C. F. B., Pani, P., Cardoso, V. & Crispino, L. C. B. Astrophysical signatures of boson stars: Quasinormal modes and inspiral resonances. Phys. Rev. D 88, 064046 (2013).

    ADS  Article  Google Scholar 

  64. 64.

    Berti, E., Cardoso, V. & Will, C. M. On gravitational-wave spectroscopy of massive black holes with the space interferometer LISA. Phys. Rev. D 73, 064030 (2006).

    ADS  MathSciNet  Article  Google Scholar 

  65. 65.

    Berti, E. & Cardoso, V. Supermassive black holes or boson stars? Hair counting with gravitational wave detectors. Int. J. Mod. Phys. D 15, 2209–2216 (2006).

    ADS  MathSciNet  Article  MATH  Google Scholar 

  66. 66.

    Chirenti, C. & Rezzolla, L. Did GW150914 produce a rotating gravastar? Phys. Rev. D 94, 084016 (2016).

    ADS  Article  Google Scholar 

  67. 67.

    Konoplya, R. A. & Zhidenko, A. Wormholes versus black holes: Quasinormal ringing at early and late times. J. Cosmol. Astropart. Phys. 1612, 043 (2016).

    ADS  MathSciNet  Article  Google Scholar 

  68. 68.

    Nandi, K. K., Izmailov, R. N., Yanbekov, A. A. & Shayakhmetov, A. A. Ring-down gravitational waves and lensing observables: How far can a wormhole mimic those of a black hole? Phys. Rev. D 95, 104011 (2017).

    ADS  Article  Google Scholar 

  69. 69.

    Barcelo, C., Carballo-Rubio, R. & Garay, L. J. Gravitational wave echoes from macroscopic quantum gravity effects. J. High Energ. Phys. 2017, 54 (2017).

    ADS  MathSciNet  Article  Google Scholar 

  70. 70.

    Brustein, R., Medved, A. J. M. & Yagi, K. When black holes collide: Probing the interior composition by the spectrum of ringdown modes and emitted gravitational waves. Preprint at (2017).

  71. 71.

    Bezares, M., Palenzuela, C. & Bona, C. Final fate of compact boson star mergers. Phys. Rev. D 95, 124005 (2017).

    ADS  Article  Google Scholar 

  72. 72.

    Cardoso, V., Franzin, E., Maselli, A., Pani, P. & Raposo, G. Testing strong-field gravity with tidal Love numbers. Phys. Rev. D 95, 084014 (2017).

    ADS  Article  Google Scholar 

  73. 73.

    Flanagan, E. E. & Hinderer, T. Constraining neutron star tidal Love numbers with gravitational wave detectors. Phys. Rev. D 77, 021502 (2008).

    ADS  Article  Google Scholar 

  74. 74.

    Binnington, T. & Poisson, E. Relativistic theory of tidal Love numbers. Phys. Rev. D 80, 084018 (2009).

    ADS  Article  Google Scholar 

  75. 75.

    Damour, T. & Nagar, A. Relativistic tidal properties of neutron stars. Phys. Rev. D 80, 084035 (2009).

    ADS  Article  Google Scholar 

  76. 76.

    Poisson, E. Tidal deformation of a slowly rotating black hole. Phys. Rev. D 91, 044004 (2015).

    ADS  MathSciNet  Article  Google Scholar 

  77. 77.

    Pani, P., Gualtieri, L., Maselli, A. & Ferrari, V. Tidal deformations of a spinning compact object. Phys. Rev. D 92, 024010 (2015).

    ADS  MathSciNet  Article  Google Scholar 

  78. 78.

    Wade, M., Creighton, J. D. E., Ochsner, E. & Nielsen, A. B. Advanced LIGO’s ability to detect apparent violations of the cosmic censorship conjecture and the no-hair theorem through compact binary coalescence detections. Phys. Rev. D 88, 083002 (2013).

    ADS  Article  Google Scholar 

  79. 79.

    Sennett, N., Hinderer, T., Steinhoff, J., Buonanno, A. & Ossokine, S. Distinguishing boson stars from black holes and neutron stars from tidal interactions in inspiraling binary systems. Phys. Rev. D 96, 024002 (2017).

    ADS  Article  Google Scholar 

  80. 80.

    Krishnendu, N. V., Arun, K. G. & Mishra, C. K. Testing the binary black hole nature of a compact binary coalescence. Preprint at (2017).

  81. 81.

    Birks, J. B. Rutherford at Manchester. (Benjamon, New York, 1963).

    Google Scholar 

Download references


V.C. acknowledges financial support provided under the European Union’s H2020 ERC Consolidator Grant ‘Matter and strong-field gravity: New frontiers in Einstein’s theory’, grant agreement No. MaGRaTh–646597. Research at Perimeter Institute is supported by the Government of Canada through Industry Canada and the Province of Ontario through the Ministry of Economic Development Innovation. This article is based on work from COST Action CA16104 ‘GWverse’ and MP1304 ‘NewCompstar’, supported by COST (European Cooperation in Science and Technology). This work was partially supported by FCT-Portugal through project IF/00293/2013, and by the H2020-MSCA-RISE-2015, grant No. StronGrHEP-690904.

Author information




V.C. and P.P. contributed equally to the writing and calculations in this work.

Corresponding author

Correspondence to Vitor Cardoso.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cardoso, V., Pani, P. Tests for the existence of black holes through gravitational wave echoes. Nat Astron 1, 586–591 (2017).

Download citation

Further reading


Quick links