Letter | Published:

Detection of microgauss coherent magnetic fields in a galaxy five billion years ago

Nature Astronomyvolume 1pages621626 (2017) | Download Citation

Abstract

Magnetic fields play a pivotal role in the physics of interstellar medium in galaxies1, but there are few observational constraints on how they evolve across cosmic time2,3,4,5,6,7. Spatially resolved synchrotron polarization maps at radio wavelengths reveal well-ordered large-scale magnetic fields in nearby galaxies1,8,9 that are believed to grow from a seed field via a dynamo effect10,11. To directly test and characterize this theory requires magnetic field strength and geometry measurements in cosmologically distant galaxies, which are challenging to obtain due to the limited sensitivity and angular resolution of current radio telescopes. Here, we report the cleanest measurements yet of magnetic fields in a galaxy beyond the local volume, free of the systematics traditional techniques would encounter. By exploiting the scenario where the polarized radio emission from a background source is gravitationally lensed by a foreground galaxy at z = 0.439 using broadband radio polarization data, we detected coherent μG magnetic fields in the lensing disk galaxy as seen 4.6 Gyr ago, with similar strength and geometry to local volume galaxies. This is the highest redshift galaxy whose observed coherent magnetic field property is compatible with a mean-field dynamo origin.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from $8.99

All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Beck, R. Magnetic fields in spiral galaxies. Annu. Rev. Astron. Astrophys. 24, 4–61 (2016).

  2. 2.

    Kronberg, P. P., Perry, J. J. & Zukowski, E. L. H. Discovery of extended Faraday rotation compatible with spiral structure in an intervening galaxy at z=0.395—new observations of PKS 1229–021. Astrophys. J. 386, 528–535 (1992).

  3. 3.

    Oren, A. L. & Wolfe, A. M. A Faraday rotation search for magnetic fields in quasar damped LY alpha absorption systems. Astrophys. J. 445, 624–641 (1995).

  4. 4.

    Joshi, R. & Chand, H. Dependence of residual rotation measure on intervening Mg II absorbers at cosmic distances. Mon. Not. R. Astron. Soc. 434, 3566–3571 (2013).

  5. 5.

    Bernet, M. L., Miniati, F., Lilly, S. J., Kronberg, P. P. & Dessauges-Zavadsky, M. Strong magnetic fields in normal galaxies at high redshift. Nature 454, 302–304 (2008).

  6. 6.

    Farnes, J. S., O’Sullivan, S. P., Corrigan, M. E. & Gaensler, B. M. Faraday rotation from magnesium II absorbers toward polarized background radio sources. Astrophys. J. 795, 63–89 (2014).

  7. 7.

    Kim, K. S. et al. Faraday rotation measure synthesis of intermediate redshift quasars as a probe of intervening matter. Astrophys. J. 829, 133–155 (2016).

  8. 8.

    Beck, R. & Wielebinski, R. in Planets, Stars and Stellar Systems Vol. 5: Galactic Structure and Stellar Populations (eds Oswalt, T. D. & Gilmore, G.) 641–723 (Springer, Dordrecht, the Netherlands, 2013).

  9. 9.

    Kronberg, P. P. Cosmic Magnetic Fields (Cambridge Univ. Press, Cambridge, 2016).

  10. 10.

    Ruzmaikin, A. A., Shukurov, A. M. & Sokoloff, D. D. Magnetic Fields of Galaxies (Kluwer, Dordrecht, the Netherlands, 1988).

  11. 11.

    Kulsrud, R. M. & Zweibel, E. G. On the origin of cosmic magnetic fields. Rep. Prog. Phys. 71, 046901 (2008).

  12. 12.

    Myers, S. T. et al. CLASS B1152+199 and B1359+154: two new lens systems discovered in the cosmic lens all-sky survey. Astrophys. J. 117, 2565–2572 (1999).

  13. 13.

    Rusin, D. et al. High-resolution observations and mass modeling of the CLASS gravitational lens B1152+199. Mon. Not. R. Astron. Soc. 300, 205–211 (2002).

  14. 14.

    Dai, X. & Kochanek, C. S. Differential X-ray absorption and dust-to-gas ratios of the lens galaxies SBS 0909+523, FBQS 0951+2635, and B1152+199. Astrophys. J. 692, 677–683 (2009).

  15. 15.

    Toft, S., Hjorth, J. & Burud, I. The extinction curve of the lensing galaxy of B1152+199 at z = 0.44. Astron. Astrophys. 357, 115–119 (2000).

  16. 16.

    Dyer, C. C. & Shaver, E. G. On the rotation of polarization by a gravitational lens. Astrophys. J. Lett. 390, L5–L7 (1992).

  17. 17.

    Narasimha, D. & Chitre, S. M. Large scale magnetic fields in lens galaxies. J. Korean Astron. Soc. 37, 355–359 (2004).

  18. 18.

    Patnaik, A. R., Menten, K. M., Porcas, R. W. & Kemball, A. J. in Gravitational Lensing: Recent Progress and Future Goals (eds Brainerd, T. G. & Kochanek, C. S.) 99–100 (Astronomical Society of the Pacific, San Francisco, CA, 2001).

  19. 19.

    Brentjens, M. A. & de Bruyn, A. G. Faraday rotation synthesis. Astron. Astrophys. 441, 1217–1228 (2005).

  20. 20.

    Sokoloff, D. D. et al. Depolarization and Faraday effects in galaxies. Mon. Not. R. Astron. Soc. 299, 189–206 (1998).

  21. 21.

    Rumbaugh, N. et al. Radio monitoring campaigns of six strongly lensed quasars. Mon. Not. R. Astron. Soc. 450, 1042–1056 (2015).

  22. 22.

    Brown, J. C. et al. Rotation measures of extragalactic sources behind the southern galactic plane: new insights into the large-scale magnetic field of the inner Milky Way. Astrophys. J. 663, 258–266 (2007).

  23. 23.

    Haverkorn, M., Brown, J. C., Gaensler, B. M. & McClure-Griffiths, N. M. The outer scale of turbulence in the magnetoionized galactic interstellar medium. Astrophys. J. 680, 362–370 (2008).

  24. 24.

    Gaensler, B. M. et al. The magnetic field of the Large Magellanic Cloud revealed through Faraday rotation. Science 307, 1610–1612 (2005).

  25. 25.

    Beck, R., Brandenburg, A., Moss, D., Shukurov, A. & Sokoloff, D. Galactic magnetism: recent developments and perspectives. Annu. Rev. Astron. Astrophys. 34, 155–206 (1996).

  26. 26.

    Xu, J. & Han, J. L. Extragalactic dispersion measures of fast radio bursts. Res. Astron. Astrophys. 15, 1629–1638 (2015).

  27. 27.

    Masters, K. L. et al. Galaxy Zoo: dust in spiral galaxies. Mon. Not. R. Astron. Soc. 404, 792–810 (2010).

  28. 28.

    Shukurov, A. in Mathematical Aspects of Natural Dynamos (eds Dormy, E. A. & Soward, M.) Ch. 7 (CRC Press, Boca Raton, FL, 2007).

  29. 29.

    Shukurov, A. in Cosmic Magnetic Fields (eds Wielebinski, R. & Beck, R.) 113–135 (Springer Berlin Heidelberg, Berlin, Germany, 2005).

  30. 30.

    Momcheva, I. G., Williams, K. A., Cool, R. J., Keeton, C. R. & Zabludoff, A. I. A spectroscopic survey of the fields of 28 strong gravitational lenses: the redshift catalog. Astrophys. J. Suppl. 219, 29–61 (2015).

  31. 31.

    Arshakian, T. G., Beck, R., Krause, M. & Sokoloff, D. Evolution of magnetic fields in galaxies and future observational tests with the Square Kilometre Array. Astron. Astrophys. 494, 21–32 (2009).

  32. 32.

    van der Kruit, P. C. & Freeman, K. C. Galaxy disks. Annu. Rev. Astron. Astrophys. 49, 301–371 (2011).

  33. 33.

    Neronov, A. & Vovk, I. Evidence for strong extragalactic magnetic fields from Fermi observations of TeV blazars. Science 328, 73–75 (2010).

  34. 34.

    Hanasz, M., Wóltański, D. & Kowalik, K. Global galactic dynamo driven by cosmic rays and exploding magnetized stars. Astrophys. J. 706, L155–L159 (2009).

  35. 35.

    McMullin, J. P., Waters, B., Schiebel, D., Young, W. & Golap, K. in Astronomical Data Analysis Software and Systems XVI (eds Shaw, R. A., Hill, F. & Bell D. J.) 127–130 (Astronomical Society of the Pacific, San Francisco, CA, 2007).

  36. 36.

    Perley, R. A. & Butler, B. J. Integrated polarization properties of 3C48, 3C138, 3C147, and 3C286. Astrophys. J. Suppl. 206, 16–23 (2013).

  37. 37.

    Sault, R. J., Teuben, P. J & Wright, M. C. H. in Astronomical Data Analysis Software and Systems IV (eds Shaw, R. A., Payne, H. E. & Hayes, J. J. E.) 433–436 (Astronomical Society of the Pacific, San Francisco, 1995).

  38. 38.

    Farnsworth, D., Rudnick, L. & Brown, S. Integrated polarization of sources at λ~1 m and new rotation measure ambiguities. Astron. J. 141, 191–219 (2011).

  39. 39.

    Sun, X. H. et al. Comparison of algorithms for determination of rotation measure and Faraday structure I. 1100–1400 MHz. Astron. J. 149, 60–73 (2015).

  40. 40.

    O’Sullivan, S. P. et al. Complex Faraday depth structure of active galactic nuclei as revealed by broad-band radio polarimetry. Mon. Not. R. Astron. Soc. 412, 3300–3315 (2012).

  41. 41.

    Akahori, T. & Ryu, D. Faraday rotation measure due to the intergalactic magnetic field II: the cosmological contribution. Astrophys. J. 738, 134–142 (2011).

  42. 42.

    Leahy, J. P. Small-scale variations in the galactic Faraday rotation. Mon. Not. R. Astron. Soc. 226, 433–446 (1987).

  43. 43.

    Harvey-Smith, L., Madsen, G. J. & Gaensler, B. M. Magnetic fields in large-diameter HII regions revealed by the Faraday rotation of compact extragalactic radio sources. Astrophys. J. 736, 83–95 (2011).

  44. 44.

    He, C., Ng, C.-Y. & Kaspi, V. M. The correlation between dispersion measure and X-ray column density from radio pulsars. Astrophys. J. 768, 64–72 (2013).

  45. 45.

    Peroux, C., Dessauges-Zavadsky, M., D’Odorico, S., Kim, T. S. & McMahon, R. G. A homogenous sample of sub-damped Lyman α systems—IV. Global metallicity evolution. Mon. Not. R. Astron. Soc. 382, 117–193 (2007).

  46. 46.

    Wolfe, A. M., Gawiser, E. & Prochaska, J. X. Damped LYα systems. Annu. Rev. Astron. Astrophys. 43, 861–918 (2005).

  47. 47.

    Dai, X. & Chen, B. Identifying the lens galaxy B1152+199 as a ghostly damped Lyman alpha system by the Cosmic Origin Spectrograph. Preprint at https://arxiv.org/abs/1612.04848 (2016).

  48. 48.

    Fletcher, A. in The Dynamic Interstellar Medium: a Celebration of the Canadian Galactic Plane Survey (eds Kothes, R., Landecker, T. L. & Willis, A. G.) 197–210 (Astronomical Society of the Pacific, San Francisco, CA, 2010).

  49. 49.

    Van Eck, C. L., Brown, J. C., Shukurov, A. & Fletcher, A. Magnetic fields in a sample of nearby spiral galaxies. Astrophys. J. 799, 35–54 (2015).

  50. 50.

    Heald, G., Braun, R. & Edmonds, R. The Westerbork SINGS survey II. Polarization, Faraday rotation, and magnetic fields. Astron. Astrophys. 503, 409–435 (2009).

Download references

Acknowledgements

The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities.

Author information

Affiliations

  1. Max Planck Institute for Radio Astronomy, Auf dem Hügel 69, Bonn, D-53121, Germany

    • S. A. Mao
    • , O. Wucknitz
    • , A. Basu
    •  & R. Beck
  2. National Radio Astronomy Observatory, PO Box O, Socorro, NM, 87801, USA

    • C. Carilli
  3. Cavendish Astrophysics Group, Cambridge, CB3 0HE, UK

    • C. Carilli
  4. Dunlap Institute for Astronomy & Astrophysics, University of Toronto, Toronto, ON, M5S 3H4, Canada

    • B. M. Gaensler
  5. Department of Physics and Astronomy, Rutgers University, Piscataway, NJ, 08854, USA

    • C. Keeton
  6. Department of Physics, University of Toronto, Toronto, ON, M5S 1A7, Canada

    • P. P. Kronberg
  7. Department of Astronomy, The University of Wisconsin, Madison, WI, 53706, USA

    • E. Zweibel
  8. Department of Physics, The University of Wisconsin, Madison, WI, 53706, USA

    • E. Zweibel

Authors

  1. Search for S. A. Mao in:

  2. Search for C. Carilli in:

  3. Search for B. M. Gaensler in:

  4. Search for O. Wucknitz in:

  5. Search for C. Keeton in:

  6. Search for A. Basu in:

  7. Search for R. Beck in:

  8. Search for P. P. Kronberg in:

  9. Search for E. Zweibel in:

Contributions

S.A.M. led the VLA proposal and observations, performed the data reduction, analysis and interpretation, and wrote the paper. C.C. and B.M.G. contributed to the VLA proposal and interpretation of the data. O.W. and C.K. contributed to the interpretation of the data from the lensing perspective. P.P.K. and E.Z. contributed to the VLA proposal. A.B. and R.B. contributed to the interpretation of the data. All authors discussed the results, interpretations and presentation of the paper.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to S. A. Mao.

Electronic supplementary material

  1. Supplementary Information

    Supplementary Figures 1–2

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/s41550-017-0218-x